Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Oscar
    et al.
    KTH Royal Institute of Technology, Sweden.
    Budak, Nesrin
    KTH Royal Institute of Technology, Sweden.
    Melander, Arne
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, KIMAB. KTH Royal Institute of Technology, Sweden.
    Palmquist, Niclas
    Volvo Car Corporation, Sweden.
    Experimental measurements and numerical simulations of distortions of overlap laser-welded thin sheet steel beam structures2017In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 61, no 5, p. 927-934Article in journal (Refereed)
    Abstract [en]

    Distortions of mild steel structures caused by laser welding were analyzed. One thousand-millimeter U-beam structures were welded as overlap joints with different process parameters and thickness configurations. Final vertical and transverse distortions after cooling were measured along the U-beam. Significant factors, which affect distortions, were identified. Heat input per unit length, weld length, and sheet thickness showed a significant effect on welding distortions. Furthermore, the welding distortions were modeled using FE simulations. A simplified and computationally efficient simulation method was used. It describes the effect of shrinkage of the weld zone during cooling. The simulations show reasonable computation times and good agreement with experiments.

  • 2.
    Andersson, Oscar
    et al.
    KTH Royal Institute of Technology, Sweden.
    Fahlström, Karl
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, KIMAB. University West, Sweden.
    Melander, Arne
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, KIMAB. KTH Royal Institute of Technology, Sweden.
    Experiments and efficient simulations of distortions of laser beam–welded thin-sheet close beam steel structures2019In: Proceedings of the Institution of mechanical engineers. Part B, journal of engineering manufacture, ISSN 0954-4054, E-ISSN 2041-2975, Vol. 233, no 3, p. 787-796Article in journal (Refereed)
    Abstract [en]

    In this article, geometrical distortions of steel structures due to laser beam welding were analyzed. Two 700-mm-long U-beam structures were welded in overlap configurations: a double U-beam structure and a U-beam/flat structure. The structures were in different material combinations from mild steel to ultrahigh-strength steel welded with different process parameters. Different measures of distortions of the U-beam structures were evaluated after cooling. Significant factors of the welding process and the geometry of the structures were identified. Furthermore, welding distortions were modeled using two predictive finite element simulation models. The previously known shrinkage method and a newly developed time-efficient simulation method were evaluated. The new model describes the effects of expansion and shrinkage of the weld zone during welding and material plasticity at elevated temperatures. The new simulation method has reasonable computation times for industrial applications and improved agreement with experiments compared to the often used so-called shrinkage method.

  • 3.
    Gutkin, Renaud
    et al.
    Volvo Cars, Sweden.
    Wirje, Anders
    Nilsson-Lindén, Hanna
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Brunklaus, Birgit
    RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation.
    Pashami, Sepideh
    RISE Research Institutes of Sweden, Digital Systems, Data Science.
    Lundahl, Jenny
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Essvik, Krister
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes.
    Enebog, Emma
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Jonasson, Christian
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Andersson, Oscar
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes.
    Safe to circulate: public report2023Report (Other academic)
    Download full text (pdf)
    fulltext
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf