Distortions of mild steel structures caused by laser welding were analyzed. One thousand-millimeter U-beam structures were welded as overlap joints with different process parameters and thickness configurations. Final vertical and transverse distortions after cooling were measured along the U-beam. Significant factors, which affect distortions, were identified. Heat input per unit length, weld length, and sheet thickness showed a significant effect on welding distortions. Furthermore, the welding distortions were modeled using FE simulations. A simplified and computationally efficient simulation method was used. It describes the effect of shrinkage of the weld zone during cooling. The simulations show reasonable computation times and good agreement with experiments.
In this article, geometrical distortions of steel structures due to laser beam welding were analyzed. Two 700-mm-long U-beam structures were welded in overlap configurations: a double U-beam structure and a U-beam/flat structure. The structures were in different material combinations from mild steel to ultrahigh-strength steel welded with different process parameters. Different measures of distortions of the U-beam structures were evaluated after cooling. Significant factors of the welding process and the geometry of the structures were identified. Furthermore, welding distortions were modeled using two predictive finite element simulation models. The previously known shrinkage method and a newly developed time-efficient simulation method were evaluated. The new model describes the effects of expansion and shrinkage of the weld zone during welding and material plasticity at elevated temperatures. The new simulation method has reasonable computation times for industrial applications and improved agreement with experiments compared to the often used so-called shrinkage method.