Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahlgren, Serina
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Morell, Karin
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Hallström, Elinor
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Mapping of biodiversity impacts and hotspot products in Nordic food consumption2022Report (Other academic)
    Abstract [en]

    The climate impact of food production has been lively debated over the last decades. It is e.g. well known that some products have a higher climate impact in comparison to other food products. The biodiversity impact of different food products is however less known. To steer the food production in a positive direction as well as to enable consumers, restaurants, public kitchens, and the food industry to make well-informed decisions, we need to address and measure this impact. The aim of this study has been to examine the biodiversity impact of Nordic and European food consumption. In this report we present (1) a brief summary of biodiversity indicators linked to food production and consumption, (2) different methods to evaluate biodiversity impact of food products and (3) a literature review of studies that assess biodiversity impacts of food products and diets. Based on the literature review, we identify food products suggested to have a higher respectively lower negative impact on biodiversity and discuss what changes that could promote a Nordic diet with lower negative impact on biodiversity. Finally, we highlight knowledge gaps and possibilities for future work. There are different methods to examine the biodiversity impact on food products, such as life cycle assessment, input-output-model, and mapping tools. Biodiversity footprints are often based on the land use (area and intensity) in combination with parameters linked to where the production takes place and thus what biodiversity values can be affected. The consumed amount of food is also often considered – a product with a low impact per kg can get a high impact when consumed to a high degree and vice versa. Our literature review shows a variety of food products with high negative biodiversity impact. Particularly, products that are known drivers of deforestation in tropical regions, such as palm oil, coffee, and cacao – as well as meat and/or animal products that have been fed with soybeans derived from tropical regions have a high negative impact on biodiversity. On the other hand, consumption of foods as vegetables, starchy roots, and pulses – ideally with domestic origin – are examples of foods indicated to have lower biodiversity impact which would be beneficial to eat more of in the Nordic diet. There are also examples of agricultural systems where human interference is crucial for maintaining a high level of biodiversity, for example keeping grazing animals on high-naturevalue-grasslands. If these lands are abandoned or planted with forest, numerous of species will be extinct. Thus, meat linked to these grasslands can also support biodiversity, especially in the Nordic countries where there are relatively many of these landscapes left (in comparison to the rest of Europe). As the studies reviewed varied in their scope, methods, and results, they are difficult to compare. More research is needed to confirm our conclusions. Furthermore, none of the methods are flawless and there are obvious difficulties with finding a transferable and scalable unit – like CO2-equivalents – since biodiversity impacts are highly dynamic and sitespecific. Additionally, most of the reviewed studies do not consider transformation of natural areas driven by food production, e.g., deforestation, and may therefore be underestimating the impacts. In future studies, the reference systems may also be discussed and further developed, and more taxonomic groups (e.g., arthropods such as insects) should preferably be included.

    Download full text (pdf)
    fulltext
  • 2.
    Ahlgren, Serina
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Morell, Karin
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Lundmark, Viktor
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Landquist, Birgit
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Biodiversitetsdatabas för livsmedel v1.0: metodrapport2023Report (Other academic)
    Download full text (pdf)
    Full text
  • 3.
    Björnsson, Lars-Henrik
    et al.
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Morell, Karin
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    van Noord, Michiel
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Pettersson, Ida
    Ecogain, Sweden.
    En kartläggning av solcellsparker i Sverige 20212022Report (Other academic)
    Abstract [en]

    This report aims to map the largest groundbased solar farms in Sweden to better understand how they are usually designed; on what type of land they are built and how they can interact with other types of activities such as agriculture and measures to improve conditions for biodiversity. Mid-2021, the typical solar farm with at least 1 MW installed power is built on arable land, can be restored and, as a rule, avoids protected and designated natural areas according to this study, which is mainly based on survey responses. Solar panels are typically directed to the south with a 30-35 degree tilt and are anchored with piles. Generally, the distance between the rows is greater than 3 meters. The most common factors determining the location of the park are the costs for land purchases/leases and proximity to electricity grid. About half of the facilities surveyed are combined with some measure intended to benefit biodiversity. Combining the photovoltaic system with grazing (25%) or cultivation (10%) is still relatively uncommon. The results show that there is an awareness of issues related to biodiversity and opportunities to combine photovoltaic installations with other activities. The increasing pace of expansion of photovoltaic capacity suggests that a deeper understanding of how photovoltaic systems are best adapted to their surroundings will increase in importance.

    Download full text (pdf)
    fulltext
  • 4.
    Morell, Karin
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Ahlgren, Serina
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Hornborg, Sara
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Axelsson, Anna F
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Olika perspektiv på biologisk mångfald2022Report (Other academic)
    Abstract [sv]

    En sammanställning som vänder sig till dig som är nyfiken på biologisk mångfald och hur olika branscher och sektorer –privata som offentliga –på olika sätt kan arbeta mot våra gemensamma mål: en bevarad mångfald och ett hållbart nyttjande av naturens resurser

    Download full text (pdf)
    fulltext
  • 5.
    Pettersson, Ida
    et al.
    Ecogain AB, Sweden.
    Morell, Karin
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Råberg, Tora
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    van Noord, Michiel
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Zinko, Ursula
    Ecogain AB, Sweden.
    Ghaem Sigarchian, Sara
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Sandström, Agnes
    Ecogain AB, Sweden.
    Unger, Malin
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    ECOVOLTAICS OCH AGRIVOLTAICS: en handbok om solcellsparker som gynnar biologisk mångfald och ekosystemtjänster2022Report (Other academic)
    Abstract [sv]

    Denna handbok beskriver relevansen av och tillvägagångssättet att planera och förvalta solcellsparker att gynna biologisk mångfald och ekosystemtjänster, med särskild fokus på jordbruk. Med utgångspunkten i hänsynshierarkin beskrivs hur målet om netto noll eller netto positiv påverkan kan integreras i solcellsprojektens olika faser. Centralt är att placeringar på mark med höga naturvärden ska undvikas. Planeringsfasen för nya solcellsparker behöver ta avstamp i de lokala förutsättningarna avseende befintliga naturvärden, potentialen för jordbruk och sociala och rekreativa värden. Sedan ska solcellsparken utformas så att solelproduktion och biologisk mångfald, jordbruk och/eller andra ekosystemtjänster kan samexistera. Detta kan underlättas genom zonindelningar och val av lämplig solcellsmontering och lämpliga solcellspaneler. Även framtagande av skötselplaner i ett tidigt skede bidrar till en anläggning som har goda förutsättningar att skapa multifunktionella värden. Anläggningsfasen ska utföras så att minimal påverkan sker på naturen och marken, till exempel genom att undvika vissa årstider, att hålla skyddsavstånd och undvika markpackning. Driftfasen handlar om rätt skötsel, så att den önskade biologiska mångfalden kan frodas och/eller att jordbruket är produktivt och att de olika aktiviteter kan hanteras effektivt sida vid sida. För att inspirera och ge konkret guidning innehåller handboken åtgärdsbibliotek för ekovoltaiska system (d.v.s. kombinationer av ökad biologisk mångfald och reglerande, kulturella och/eller stödjande ekosystemtjänster med solcellsinstallationer) och agrivoltaiska system. Solcellstekniska lösningar och deras påverkan på förutsättningar för framförallt jordbruk, men även biologisk mångfald, beskrivs också i mer detalj i handboken.

    Download full text (pdf)
    Bilaga
    Download full text (pdf)
    Rapport
  • 6.
    van Noord, Michiel
    et al.
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Pettersson, Ida
    Ecogain.
    Råberg, Tora
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Morell, Karin
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Björnsson, Lars-Henrik
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Zinko, Ulrika
    Ecogain, Sweden.
    Ghaem Sigarchian, Sara
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Sandström, Agnes
    Ecogain, Sweden.
    Biodiversity and Ecosystems Services in Swedish Solar Farms: Current Practice and a Planning Framework for Net Gain2022In: Proceedings of the WCPEC-8 2022, Munich: WIP Renewable Energies, 2022, p. 985-991Conference paper (Other academic)
    Abstract [en]

    The Swedish solar farm market is expanding rapidly as ground-mounted solar plants are getting larger in size and number. This development inevitably leads to an increased land use change, which is the foremost cause of biodiversity loss. Along with a decrease in biodiversity, nature's supply of ecosystem services decreases, as well as chances to meet several (inter)national environmental and sustainable development goals. This study presents results of the Eco-Sun project, developing practical guidelines for the planning, construction and management of solar farms with a net zero, or net positive, impact on biodiversity and ecosystem services. It shows that biodiversity measures are present but limited in Swedish solar farms, while agrivoltaic crop cultivation is limited to one single site. In order to address environmental challenges and increase multiple land use, a step-by-step process is presented for the inclusion of biodiversity, agricultural and non-agricultural ecosystem services into the planning and design of ground-mounted solar PV.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf