Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hyll, Kari
    RISE, Innventia. KTH Royal Institute of Technology, Sweden.
    Size and shape characterization of fines and fillers: A review2015In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 30, no 3, p. 466-487Article in journal (Refereed)
    Abstract [en]

    Many properties of fines and fillers are dependent on their size and shape. This review is on the literature on size and shape characterization of fines and fillers. It takes into account measurement techniques of particle width, length, equivalent diameter, area, and shape/morphology. The advantages and limitations of different methods are discussed. Measurement of other particles properties, e.g., optical, chemical or rheological, were not included in the review. Size and shape characterization methods can be roughly divided into gravimetric and non-gravimetric methods. Gravimetric measurements methods account for all particles in the sample, but give only indicative size and shape information. Non-gravimetric methods usually give more direct size and shape information, but only account for particles larger than the resolution of the instrument. Additionally, measuring both larger and smaller particles simultaneously is rarely possible. An implication is that current analysers fail to measure a larger share of the sample, for example fibrils, which have a high impact on product properties. Of the reviewed measurement techniques, flow microscopy had the highest potential. Based on instruments found in other application areas, possible developments for flow microscopes include multiwavelength illumination and sensors, fluorescent staining, and hydrodynamic focusing.

  • 2.
    Hyll, Kari
    et al.
    RISE, Innventia. KTH Royal Institute of Technology, Sweden.
    Björk, Elisabeth
    RISE, Innventia. Mid Sweden University, Sweden.
    Vomhoff, Hannes
    RISE, Innventia.
    Flow imaging characterisation of morphological changes of chemical pulp due to refining2016In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, no 3, p. 411-421Article in journal (Refereed)
    Abstract [en]

    The influence of the refining process on the morphological changes of a chemical softwood pulp was investigated. The Voith LR40 industrial-like laboratory low consistency refiner was used, where the pulp was refined with five refining segments with differences in bar widths, groove widths, and cutting angles. The refined pulp was characterized with a fibre analyser with a spatial resolution of approximately 4 μm/pixel and a wide size range. The fines fraction of the refined pulp was also characterized with an imaging flow cytometer with a spatial resolution of 0.33 μm/pixel and a narrower size range. The fibre analyser measurements showed that the mean length, width, and aspect ratio of the fines decreased monotonically with accumulated refining energy. The imaging flow cytometer with its higher spatial resolution showed little change in fines morphology with accumulated refining energy. The morphology of the fines was more dependent on the applied specific refining energy than the design of the refining segment. However, a segment with much finer grooves and bars, initially designed for hardwood, gave significantly less fibre shortening, fines generation, external fibrillation, kink, and fines that were more fibrillar, compared to the other segments.Grant: The authors of this work would like to thank Prof. Lars Mattsson, Thomas Grahn, and Eva Ålander for fruitful discussions. The discussions with Lorentzen & Wettre were of great assistance. The financial support of the Swedish Energy Agency and the Önnesjöstiftelsen to the PhD project, and of the Fibre and Stock Design research programme to this evaluation study is gratefully acknowledged.

  • 3.
    Hyll, Kari
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy. King's College London, UK.
    Farahani, Farnaz
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Mattsson, Lars
    KTH Royal Institute of Technology, Sweden.
    Comparison of optical instruments for fines and filler characterisation2017In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 32, no 1, p. 97-109Article in journal (Refereed)
    Abstract [en]

    A laser diffractometer and three image-based instruments with spatial resolutions between 0.33 and 10 µm/pixel were compared through measurements on calibration spheres and fine fractions comprising pulp fines of various types, neat PCC filler, and a mixture of fines and fillers. The laser diffractometer was highly sensitive to the keyed in refractive index of the samples, which was calculated based on volume-based mixing rules. A high-resolution flow cytometer and a high-resolution fibre analyser were found to be complimentary for measurements on neat fines and fines/filler mixtures, and superior to the laser diffractometer. When measuring on fillers, the laser diffractometer performed as well as the high-resolution flow cytometer, which was capable of resolving single filler particles. The sizes of the calibration spheres were overestimated by the image-based instruments, and the measurement uncertainty was high. The uncertainty was mainly attributed to the unrestricted particle motion, and the low accuracy to the dissimilar optical properties of the calibration material, compared to fines. Thus, calibration materials with shape and optical properties more similar to fines should be developed.

  • 4.
    Hyll, Kari
    et al.
    RISE, Innventia.
    Vomhoff, Hannes
    RISE, Innventia.
    Mattsson, L.
    A method for measurement of the directional emittance of paper in the infrared wavelength range2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, no 5, p. 958-967Article in journal (Refereed)
  • 5.
    Hyll, Kari
    et al.
    RISE, Innventia.
    Vomhoff, Hannes
    RISE, Innventia.
    Nygårds, Mikael
    RISE, Innventia.
    Analysis of the plastic and elastic energy during the deformation and rupture of a paper sample using thermography2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, no 2, p. 329-334Article in journal (Refereed)
  • 6.
    Olin, Pontus
    et al.
    KTH Royal Institute of Technology, Sweden.
    Hyll, Kari
    RISE, Innventia. KTH Royal Institute of Technology, Sweden.
    Ovaskainen, Louise
    KTH Royal Institute of Technology, Sweden.
    Ruda, Marcus
    Cellutech AB, Sweden.
    Schmidt, Oskar
    Cellutech AB, Sweden.
    Turner, Charlotta
    Lund University, Sweden.
    Wågberg, Lars
    KTH Royal Institute of Technology, Sweden.
    Development of a semicontinuous spray process for the production of superhydrophobic coatings from supercritical carbon dioxide solutions2015In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 54, no 3, p. 1059-1067Article in journal (Refereed)
    Abstract [en]

    Superhydrophobic surfaces have been fabricated in a continuous spray process, where an alkyl ketene dimer (AKD) wax is dissolved in supercritical carbon dioxide (scCO2) and sprayed onto the substrate. The mass of extracted AKD from scCO2 has been investigated as well as the pressure, temperature, and flow of CO2 at the steady-state spray conditions. Several different substrates such as glass, aluminum, paper, poly(ethylene terephthalate) (PET), and polytetrafluoroethylene (PTFE) have been successfully coated, and the superhydrophobic properties have been evaluated by measurement of water contact angle, water drop friction, scanning electron microscopy (SEM), and surface topography. The most efficient spray process, considering surface properties and mass of extracted AKD, is obtained at the lowest temperature investigated, 67 °C, and the highest pressure evaluated in this study, 25 MPa. We also show that the influence of preexpansion conditions (p, T) on the surface temperature at the selected spray distance (3 cm) is negligible by measurement with an infrared camera during spraying.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9