Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aranzana-Climent, Vincent
    et al.
    Uppsala University, Sweden.
    Hughes, Diarmaid
    Uppsala University, Sweden.
    Cao, Sha
    Uppsala University, Sweden.
    Tomczak, Magdalena
    National Medicines Institute, Poland.
    Urbas, Malgorzata
    National Medicines Institute, Poland.
    Zabicka, Dorota
    Uppsala University, Sweden.
    Vingsbo Lundberg, Carina
    Statens Serum Institut, Denmark.
    Hansen, Jon
    Statens Serum Institut, Denmark.
    Lindberg, Johan
    RISE Research Institutes of Sweden, Bioeconomy and Health, Chemical and Pharmaceutical Toxicology.
    Hobbie, Sven N
    University of Zurich, Switzerland.
    Friberg, Lena E
    Uppsala University, Sweden.
    Translational in vitro and in vivo PKPD modelling for apramycin against Gram-negative lung pathogens to facilitate prediction of human efficacious dose in pneumonia2022In: Clinical Microbiology and Infection, ISSN 1198-743X, E-ISSN 1469-0691, Vol. 28, no 10, p. 1367-1374Article in journal (Refereed)
    Abstract [en]

    Objectives: New drugs and methods to efficiently fight carbapenem-resistant gram-negative pathogens are sorely needed. In this study, we characterized the preclinical pharmacokinetics (PK) and pharmacodynamics of the clinical stage drug candidate apramycin in time kill and mouse lung infection models. Based on in vitro and in vivo data, we developed a mathematical model to predict human efficacy. Methods: Three pneumonia-inducing gram-negative species Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were studied. Bactericidal kinetics were evaluated with time-kill curves; in vivo PK were studied in healthy and infected mice, with sampling in plasma and epithelial lining fluid after subcutaneous administration; in vivo efficacy was measured in a neutropenic mouse pneumonia model. A pharmacokinetic-pharmacodynamic model, integrating all the data, was developed and simulations were performed. Results: Good lung penetration of apramycin in epithelial lining fluid (ELF) was shown (area under the curve (AUC)ELF/AUCplasma = 88%). Plasma clearance was 48% lower in lung infected mice compared to healthy mice. For two out of five strains studied, a delay in growth (∼5 h) was observed in vivo but not in vitro. The mathematical model enabled integration of lung PK to drive mouse PK and pharmacodynamics. Simulations predicted that 30 mg/kg of apramycin once daily would result in bacteriostasis in patients. Discussion: Apramycin is a candidate for treatment of carbapenem-resistant gram-negative pneumonia as demonstrated in an integrated modeling framework for three bacterial species. We show that mathematical modelling is a useful tool for simultaneous inclusion of multiple data sources, notably plasma and lung in vivo PK and simulation of expected scenarios in a clinical setting, notably lung infections. © 2022 The Author(s)

  • 2.
    Becker, K.
    et al.
    University of Zurich, Switzerland.
    Aranzana-Climent, V.
    Uppsala University, Sweden.
    Cao, S.
    Uppsala University, Sweden.
    Nilsson, A.
    Uppsala University, Sweden.
    Shariatgorji, R.
    Uppsala University, Sweden.
    Haldimann, K.
    University of Zurich, Switzerland.
    Platzack, Björn
    RISE Research Institutes of Sweden, Bioeconomy and Health, Chemical Process and Pharmaceutical Development.
    Hughes, D.
    Uppsala University, Sweden.
    Andrén, P. E.
    Uppsala University, Sweden.
    Böttger, E. C.
    Uppsala University, Sweden.
    Friberg, L. E.
    University of Zurich, Switzerland.
    Hobbie, S. N.
    Uppsala University, Sweden.
    consortium, the ENABLE
    University of Zurich, Switzerland.
    Efficacy of EBL-1003 (apramycin) against Acinetobacter baumannii lung infections in mice2021In: Clinical Microbiology and Infection, ISSN 1198-743X, E-ISSN 1469-0691, Vol. 27, no 9, p. 1315-Article in journal (Refereed)
    Abstract [en]

    Objectives: Novel therapeutics are urgently required for the treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) causing critical infections with high mortality. Here we assessed the therapeutic potential of the clinical-stage drug candidate EBL-1003 (crystalline free base of apramycin) in the treatment of CRAB lung infections. Methods: The genotypic and phenotypic susceptibility of CRAB clinical isolates to aminoglycosides and colistin was assessed by database mining and broth microdilution. The therapeutic potential was assessed by target attainment simulations on the basis of time–kill kinetics, a murine lung infection model, comparative pharmacokinetic analysis in plasma, epithelial lining fluid (ELF) and lung tissue, and pharmacokinetic/pharmacodynamic (PKPD) modelling. Results: Resistance gene annotations of 5451 CRAB genomes deposited in the National Database of Antibiotic Resistant Organisms (NDARO) suggested >99.9% of genotypic susceptibility to apramycin. Low susceptibility to standard-of-care aminoglycosides and high susceptibility to EBL-1003 were confirmed by antimicrobial susceptibility testing of 100 A. baumannii isolates. Time–kill experiments and a mouse lung infection model with the extremely drug-resistant CRAB strain AR Bank #0282 resulted in rapid 4-log CFU reduction both in vitro and in vivo. A single dose of 125 mg/kg EBL-1003 in CRAB-infected mice resulted in an AUC of 339 h × μg/mL in plasma and 299 h × μg/mL in ELF, suggesting a lung penetration of 88%. PKPD simulations suggested a previously predicted dose of 30 mg/kg in patients (creatinine clearance (CLCr) = 80 mL/min) to result in >99% probability of –2 log target attainment for MICs up to 16 μg/mL. Conclusions: This study provides proof of concept for the efficacy of EBL-1003 in the treatment of CRAB lung infections. Broad in vitro coverage, rapid killing, potent in vivo efficacy, and a high probability of target attainment render EBL-1003 a strong therapeutic candidate for a priority pathogen for which treatment options are very limited. © 2020 The Author(s)

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf