Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Achtel, Christian
    et al.
    Friedrich Schiller University Jena, Germany.
    Jedvert, Kerstin
    RISE - Research Institutes of Sweden, Materials and Production, IVF.
    Kostag, Marc
    University of Sao Paulo, Brazil.
    El Seoud, Omar A.
    University of Sao Paulo, Brazil.
    Heinze, Thomas
    Friedrich Schiller University Jena, Germany.
    Surprising Insensitivity of Homogeneous Acetylation of Cellulose Dissolved in Triethyl(n-octyl)ammonium Chloride/Molecular Solvent on the Solvent Polarity2018In: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 303, no 5Article in journal (Refereed)
    Abstract [en]

    The homogeneous acetylation of microcrystalline cellulose (MCC) by acetyl chloride and acetic anhydride in triethyl(n-octyl)ammonium chloride (N2228Cl)/molecular solvents (MSs) is investigated. The reaction with both acylating agents shows the expected increase of the degree of substitution (DS) on reaction temperature and time. Under comparable reaction conditions, however, DS is surprisingly little dependent on the MS employed, although the MSs differ in empirical polarity by 7 kcal mol−1 as calculated by use of solvatochromic probes. The empirical polarities of (MCC + N2228Cl + MS) differ only by 0.8 kcal mol−1. The formation a polar electrolyte sheath around cellulose chains presumably contributes to this “leveling-off” of the dependence DS on the polarity of the parent MS employed. N2228Cl recovery and recycling is feasible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2.
    Jedvert, Kerstin
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, IVF. University of Jena, Germany.
    Elschner, Thomas
    University of Maribor, Slovenia.
    Heinze, Thomas
    University of Jena, Germany.
    Adsorption Studies of Amino Cellulose on Cellulosics2017In: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, article id 1700022Article in journal (Refereed)
    Abstract [en]

    Adsorption of a typical example of a new class of amino cellulose, namely 6-deoxy-6-(2-aminoethyl)amino cellulose at different pH-values and in the presence of electrolytes, onto cellulose model substrates is studied with surface plasmon resonance and quartz crystal microbalance with dissipation monitoring. Unexpectedly, adsorption is consistently higher at a higher pH-value of 10, indicating that solubility and interactions between amine moieties and cellulose are more important than electrostatic interactions. The findings are highly relevant for the process to modify material surfaces with amino cellulose in water-based systems as a universal tool for changing the surface properties and chemistry. Potential applications for an antimicrobial all biobased material could be found, e.g., as medical textiles or in the biotechnology sector.

  • 3.
    Träger, Andrea
    et al.
    KTH Royal Institute of Technology, Sweden.
    Carlmark, Anna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy. KTH Royal Institute of Technology, Sweden.
    Wågberg, Lars
    KTH Royal Institute of Technology, Sweden.
    Interpenetrated Networks of Nanocellulose and Polyacrylamide with Excellent Mechanical and Absorptive Properties2018In: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 303, no 5, article id 1700594Article in journal (Refereed)
    Abstract [en]

    Composites based on interpenetrating networks (IPNs) of cellulose nanofibril (CNF) aerogels and polyacrylamide are prepared and exhibit robust mechanical, water retaining, and re-swelling capacities. Furthermore, their swelling behavior is not affected by an increased ionic strength of the aqueous phase. These unprecedented IPNs combine the water retaining capacity of the polyacrylamide with the mechanical strength provided by the CNF aerogel template. The CNF aerogel/polyacrylamide composites exhibit a compressive stress at break greater than 250% compared with a neat polyacrylamide hydrogel. Furthermore, the composites retain their wet compression properties after drying and re-swelling, whereas the neat polyacrylamide hydrogels fail at a significantly lower stress and strain after drying and re-swelling. These composite materials highlight the potential of CNF aerogels to strengthen the mechanical properties and reduce the number of fracture defects during the drying and re-swelling of a hydrogel. These composites show the potential of being optimized for a plethora of applications, especially in the hygiene field and for biomedical devices. 

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7