Endre søk
Begrens søket
1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Drake, Henrik
    et al.
    Linnaeus University, Sweden.
    Tullborg, Eva-Lena
    University of Gothenburg, Sweden.
    Whitehouse, Martin
    Swedish Museum of Natural History, Sweden.
    Sandberg, Bertil
    RISE - Research Institutes of Sweden, Material och produktion, KIMAB.
    Blomfeldt, Thomas
    RISE - Research Institutes of Sweden, Material och produktion, KIMAB.
    Åström, Mats E.
    Linnaeus University, Sweden.
    Extreme fractionation and micro-scale variation of sulphur isotopes during bacterial sulphate reduction in deep groundwater systems2015Inngår i: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 161, s. 1-18Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study conducted at the Äspö Hard Rock Laboratory, SE Sweden, determines the extent and mechanisms of sulphur-isotope fractionation in permanently reducing groundwater in fractured crystalline rock. Two boreholes >400m below the ground surface were investigated. In the 17-year-old boreholes, the Al instrumentation pipes had corroded locally (i.e., Al-[oxy]hydroxides had formed) and minerals (i.e., pyrite, iron monosulphide, and calcite) had precipitated on various parts on the equipment. By chemically and isotopically comparing the precipitates on the withdrawn instrumentation and the borehole waters, we gained new insight into the dynamics of sulphate reduction, sulphide precipitation, and sulphur-isotope fractionation in deep-seated crystalline-rock settings. An astonishing feature of the pyrite is its huge variability in δ34S, which can exceed 100‰ in total (i.e., -47.2 to +53.3‰) and 60‰ over 50μm of growth in a single crystal. The values at the low end of the range are up to 71‰ lower than measured in the dissolved sulphate in the water (20-30‰), which is larger than the maximum difference reported between sulphate and sulphide in pure-culture experiments (66‰) but within the range reported from natural sedimentary settings. Although single-step reduction seems likely, further studies are needed to rule out the effects of possible S disproportionation. The values at the high end of the range (i.e., high δ34Spy) are much higher than could be produced from the measured sulphate under any biogeochemical conditions. This strongly suggests the development of closed-system conditions near the growing pyrite, i.e., the rate of sulphate reduction exceeds the rate of sulphate diffusion in the local fluid near the pyrite, causing the local aqueous phase (and thus the forming pyrite) to become successively enriched in heavy S (34S). Consequently, the δ34S values of the forming pyrite become exceptionally high and strongly decoupled from the δ34S values of the sulphate in the bulk fluid. The Al-(oxy)hydroxide and calcite precipitates are explained by a combination of deposit and galvanic corrosion initiated by Al corrosion by H2S produced by sulphate-reducing microorganisms.

  • 2.
    Siljeström, Sandra
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Funktionella material (KMf).
    Volk, Herbert
    CSIRO Earth Science and Resource Engineering, Australia; BP Exploration Operating Company Ltd, United Kingdom.
    George, Simon C.
    Macquarie University, Australia.
    Sjövall, Peter
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Funktionella material (KMf).
    Dutkiewicz, Adriana
    University of Sydney, Australia.
    Hode, Tomas
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor.
    Analysis of single oil-bearing fluid inclusions in mid-Proterozoic sandstones (Roper Group, Australia)2013Inngår i: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 122, s. 448-463Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydrocarbons and organic biomarkers extracted from black shales and other carbonaceous sedimentary rocks are valuable sources of information on the biodiversity and environment of early Earth. However, many Precambrian hydrocarbons including biomarkers are suspected of being younger contamination. An alternative approach is to study biomarkers trapped in oil-bearing fluid inclusions by bulk crushing samples and subsequently analysing the extracted hydrocarbons with gas chromatography-mass spectrometry. However, this method does not constrain the hydrocarbons to one particular oil inclusion, which means that if several different generations of oil inclusions are present in the sample, a mix of the content from these oil inclusions will be analysed. In addition, samples with few and/or small inclusions are often below the detection limit. Recently, we showed that it is possible to detect organic biomarkers in single oil-bearing fluid inclusions using time-of-flight secondary ion mass spectrometry (ToF-SIMS). In the present study, single fluid inclusion analysis has been performed on Proterozoic samples for the first time. Four individual oil-bearing fluid inclusions, found in 1430. Ma sandstone from the Roper Superbasin in Northern Australia, were analysed with ToF-SIMS. The ToF-SIMS spectra of the oil in the different inclusions are very similar to each other and are consistent with the presence of n-alkanes/branched alkanes, monocyclic alkanes, bicyclic alkanes, aromatic hydrocarbons, and tetracyclic and pentacyclic hydrocarbons. These results are in agreement with those obtained from bulk crushing of inclusions trapped in the same samples. The capability to analyse the hydrocarbon and biomarker composition of single oil-bearing fluid inclusions is a major breakthrough, as it opens up a way of obtaining molecular compositional data on ancient oils without the ambiguity of the origin of these hydrocarbons. Additionally, this finding suggests that it will be possible to analyse minute oil samples beyond the capability of established techniques. This may allow the biomarker record of the biosphere, as preserved in fluid inclusions, to be extended further back in time, and hence makes it possible to more accurately trace the early evolution of life on Earth, and search for life on other planets or moons.

1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.44.0