Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Acevedo, F.
    et al.
    Pizzul, Leticia
    RISE, SP – Sveriges Tekniska Forskningsinstitut, JTI Institutet för Jordbruks- och Miljöteknik.
    Castillo, Maria del Pilar 
    RISE, SP – Sveriges Tekniska Forskningsinstitut, JTI Institutet för Jordbruks- och Miljöteknik.
    Gonzalez, M.E.
    Cea, M.
    Gianfreda, L.
    Diez, M.C.
    Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor2010In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 80, no 3, p. 271-278Article in journal (Refereed)
    Abstract [en]

    Manganese peroxidase (MnP) produced by Anthracophyllum discolor, a Chilean white rot fungus, was immobilized on nanoclay obtained from volcanic soil and its ability to degrade polycyclic aromatic hydrocarbons (PAHs) compared with the free enzyme was evaluated. At the same time, nanoclay characterization was performed.Nanoclay characterization by transmission electronic microscopy showed a particle average size smaller than 100nm. The isoelectric points (IEP) of nanoclay and MnP from A. discolor were 7.0 and 3.7, respectively, as determined by micro electrophoresis migration and preparative isoelectric focusing. Results indicated that 75% of the enzyme was immobilized on the nanoclay through physical adsorption. As compared to the free enzyme, immobilized MnP from A. discolor achieved an improved stability to temperature and pH. The activation energy (Ea) value for immobilized MnP (51.9kJmol -1) was higher than that of the free MnP (34.4kJmol -1).The immobilized enzyme was able to degrade pyrene (>86%), anthracene (>65%), alone or in mixture, and to a less extent fluoranthene (<15.2%) and phenanthrene (<8.6%). Compared to free MnP from A. discolor, the enzyme immobilized on nanoclay enhanced the enzymatic transformation of anthracene in soil.Overall results indicate that nanoclay, a carrier of natural origin, is a suitable support material for MnP immobilization. In addition, immobilized MnP shows an increased stability to high temperature, pH and time storage, as well as an enhanced PAHs degradation efficiency in soil. All these characteristics may suggest the possible use of nanoclay-immobilized MnP from A. discolor as a valuable option for in situ bioremediation purposes. © 2010 Elsevier Ltd.

  • 2.
    Herzke, D.
    et al.
    NILU.
    Olsson, Elisabeth
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Posner, Stefan
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Energi och miljö.
    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway - A pilot study2012In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 88, no 8, p. 980-987Article in journal (Refereed)
    Abstract [en]

    Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are used in numerous industrial and consumer products because of their special chemical properties, for instance the ability to repel both water and oil. A broad variety of PFAS have been introduced into the Norwegian market through industrial use (e.g. via fire fighting foams and paints) as well as in treated customer products such as textiles and coated paper. Our present knowledge of the exact chemical PFAS compositions in preparations using perfluorinated compounds is limited. This lack of knowledge means that it is difficult to provide an accurate assessment of human exposure to these compounds or to the amount of waste that may contain treated products. It is a growing concern that these potentially harmful compounds can now be found throughout the global environment.Samples of consumer products and preparations were collected in Norway, with supplemental samples from Sweden. In 27 of the 30 analyzed consumer products and preparations a number of polyfluorinated substances that were analyzed were detected but this does not exclude the occurrence of unknown PFAS. Notable was that perfluorooctanesulphonate (PFOS), which has been strictly regulated in Norway since 2007, was found in amounts close to or exceeding the EU regulatory level in 4 of the 30 analyzed products, all within the leather or carpet product groups. High amounts of fluorotelomer alcohols (FTOHs) were found in waterproofing agents, carpets and textiles, consistent with earlier findings by Fiedler et al. (2010). The presence of PFAS in a broad range of consumer products can give rise to a constant diffuse human exposure that might eventually result in harm to humans. © 2012 Elsevier Ltd.

  • 3.
    Lönnermark, Anders
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Brandteknik, skydd (BRs ).
    Blomqvist, Per
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP Sveriges tekniska forskningsinstitut / Brandteknik, forskning (BRf ).
    Marklund, Stellan
    Emissions from simulated deep-seated fires in domestic waste2008In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 70, no 4, p. 626-639Article in journal (Refereed)
  • 4.
    Nilsson Påledal, Sören
    et al.
    Tekniska verken i Linköping AB, Sweden.
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Kemi.
    Moestedt, Jan
    Tekniska verken i Linköping AB, Sweden.
    Engelbrektsson, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor.
    Stensen, Katarina
    Tekniska verken i Linköping AB, Sweden.
    Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG)2016In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 145, p. 424-430Article in journal (Refereed)
    Abstract [en]

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty.Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L.

  • 5.
    Schellenberger, Steffen
    et al.
    Stockholm University, Sweden.
    Gillgard, Philip
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Stare, Ann
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Hanning, Anne-Charlotte
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Levenstam, O.
    University of Borås, Sweden.
    Roos, Sandra
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Cousins, I. T.
    Stockholm University, Sweden.
    Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics2018In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 193, p. 675-684Article in journal (Refereed)
    Abstract [en]

    Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with “long” perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids.

  • 6. Tortella, G.R.
    et al.
    Rubilar, O.
    Castillo, Maria del Pilar 
    RISE, SP – Sveriges Tekniska Forskningsinstitut, JTI Institutet för Jordbruks- och Miljöteknik.
    Cea, M.
    Mella-Herrera, R.
    Diez, M.C.
    Chlorpyrifos degradation in a biomixture of biobed at different maturity stages2012In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 88, no 2, p. 224-228Article in journal (Refereed)
    Abstract [en]

    The biomixture is a principal element controlling the degradation efficacy of the biobed. The maturity of the biomixture used in the biobed affects its overall performance of the biobed, but this is not well studied yet. The aim of this research was to evaluate the effect of using a typical composition of Swedish biomixture at different maturity stages on the degradation of chlorpyrifos. Tests were made using biomixture at three maturity stages: 0d (BC0), 15d (BC15) and 30d (BC30); chlorpyrifos was added to the biobeds at final concentration of 200, 320 and 480mgkg -1. Chlorpyrifos degradation in the biomixture was monitored over time. Formation of TCP (3,5,6-trichloro-2-pyrinidol) was also quantified, and hydrolytic and phenoloxidase activities measured. The biomixture efficiently degraded chlorpyrifos (degradation efficiency >50%) in all the evaluated maturity stages. However, chlorpyrifos degradation decreased with increasing concentrations of the pesticide. TCP formation occurred in all biomixtures, but a major accumulation was observed in BC30. Significant differences were found in both phenoloxidase and hydrolytic activities in the three maturity stages of biomixture evaluated. Also, these two biological activities were affected by the increase in pesticide concentration. In conclusion, our results demonstrated that chlorpyrifos can be degraded efficiently in all the evaluated maturity stages. © 2012 Elsevier Ltd.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7