Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Murugan, A.
    et al.
    NPL National Physical Laboratory, UK.
    de Huu, M.
    METAS Federal Institute of Metrology, Sweden.
    Bacquart, T.
    NPL National Physical Laboratory, UK.
    van Wijk, J.
    VSI, Netherlands.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    te Ronde, I.
    NEN, Netherlands.
    Hemfrey, D.
    NPL National Physical Laboratory, UK.
    Measurement challenges for hydrogen vehicles2019In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487Article in journal (Refereed)
    Abstract [en]

    Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot do so due to a lack of available methods and standards. This paper outlines the four biggest measurement challenges that are faced by the hydrogen industry including flow metering, quality assurance, quality control and sampling.

  • 2. Pawar, Sudhanshu
    Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process2013In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487Article in journal (Refereed)
  • 3.
    Örnek, Cem
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, KIMAB. KTH Royal Institute of Technology, Sweden.
    Reccagni, Pierfranco
    University of Manchester, UK.
    Kivisäkk, Ulf
    AB Sandvik Materials Technology, Sweden.
    Bettini, Eleonora
    AB Sandvik Materials Technology, Sweden.
    Engelberg, Dirk L.
    University of Manchester, UK.
    Pan, Jinshan
    KTH Royal Institute of Technology, Sweden.
    Hydrogen embrittlement of super duplex stainless steel – Towards understanding the effects of microstructure and strain2018In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 43, no 27, p. 12543-12555Article in journal (Refereed)
    Abstract [en]

    The effects of austenite spacing, hydrogen charging, and applied tensile strain on the local Volta potential evolution and micro-deformation behaviour of grade 2507 (UNS S32750) super duplex stainless steel were studied. A novel in-situ methodological approach using Digital Image Correlation (DIC) and Scanning Kelvin Probe Force Microscopy (SKPFM) was employed. The microstructure with small austenite spacing showed load partitioning of tensile micro-strains to the austenite during elastic loading, with the ferrite then taking up most tensile strain at large plastic deformation. The opposite trend was seen when the microstructure was pre-charged with hydrogen, with more intense strain localisation formed due to local hydrogen hardening. The hydrogen-charged microstructure with large austenite spacing showed a contrasting micro-mechanical response, resulting in heterogeneous strain localisation with high strain intensities in both phases in the elastic regime. The austenite was hydrogen-hardened, whereas the ferrite became more strain-hardened. SKPFM measured Volta potentials revealed the development of local cathodic sites in the ferrite associated with hydrogen damage (blister), with anodic sites related to trapped hydrogen and/or micro voids in the microstructure with small austenite spacing. Discrete cathodic sites with large Volta potential variations across the ferrite were seen in the coarse-grained microstructure, indicating enhanced susceptibility to micro-galvanic activity. Microstructures with large austenite spacing were more susceptible to hydrogen embrittlement, related to the development of tensile strains in the ferrite.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7