Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bai, Xiaohong
    et al.
    Northwest University, China; Carleton University, Canada.
    Claesson, Åsa
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Laronche, Albane
    Carleton University, Canada.
    Liu, Fu
    Carleton University, Canada.
    Hu, Manli
    Northwest University, China.
    Albert, Jaques
    Carleton University, Canada.
    Sensing applications of fiber Bragg gratings in single mode fibers with as-drawn 25 μm diameter cladding2021In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 144, article id 107451Article in journal (Refereed)
    Abstract [en]

    The sensing properties of fiber Bragg gratings (FBG) inscribed in single mode fiber with a 5 μm diameter core and 25 μm diameter cladding are studied experimentally for temperature, strain, bending, and surrounding refractive index. Compared to normal single mode fiber, the diameter of this fiber is 5 times smaller and it stretches 14.5 times more at the same applied load. Therefore, it is much more flexible and stretchable, while maintaining excellent optical quality at wavelengths near 1550 nm. In addition to a core mode back reflection resonance, strong FBGs inscribed in this fiber show a relatively small number of narrow bandwidth (0.7 nm) cladding mode resonances separated in wavelength by 2.5–6 nm. This relatively coarse spectral comb can then be used to sense many different kinds of perturbations involving core and cladding modes. In particular, unlike cladding-mode based sensors made from tilted FBGs, all resonances are of the same azimuthal order as the core mode (i.e. HE1m). This feature makes these gratings particularly sensitive to bending which causes the appearance of new resonances and reduced amplitudes of the original ones, each by up to 10 dB/mm−1 of curvature. On the other hand, the temperature sensitivities of all modes are similar to that of standard fiber (around 11 pm/oC) while strain sensitivities are somewhat higher (1.6–1.7 pm/μstrain). The surrounding refractive index sensitivity is also increased (by a factor of 3) over normal fiber, mostly due to the increased modal dispersion of the modes of the thinner cladding. Furthermore, it is possible to serially multiplex different gratings at different wavelengths by interleaving their resonance combs and preserving each grating identity in the combined spectrum.

  • 2.
    Torkamany, Mohammad Javad
    et al.
    Tarbiat Modares University, Iran; Luleå University of Technology, Sweden.
    Kaplan, Alexander F. H.
    Luleå University of Technology, Sweden.
    Ghaini, F. Malek
    Tarbiat Modares University, Iran.
    Vänskä, Mikko
    Lappeenranta University of Technology, Finland.
    Salminen, Antti
    Lappeenranta University of Technology, Finland.
    Fahlström, Karl
    RISE - Research Institutes of Sweden, Materials and Production, KIMAB.
    Hedegård, Joakim
    RISE - Research Institutes of Sweden, Materials and Production, KIMAB.
    Wire deposition by a laser-induced boiling front2015In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 69, p. 104-112Article in journal (Refereed)
    Abstract [en]

    In laser materials processing the addition of material by wire is an option for techniques like laser welding, laser cladding or rapid prototyping. The stability of the wire deposition is strongly dependent on the wire interaction with the laser beam. For leading position wire feeding, high speed imaging was applied to study the melt transfer from the wire tip to the workpiece during keyhole welding. The observations revealed that a very stable concave processing front forms at the wire tip. A boiling front is established as an extension of the keyhole and the melt film at the front is sheared downwards by the ablation pressure of boiling. The deposition of the molten wire into the weld zone is smooth and controllable. Various wire front geometries and melt transitions are compared for different parameters. The option of laterally oscillating the laser beam is investigated and the interaction mechanism involved is discussed. Wire deposition by inducing a boiling front is explained here for the first time, which should promote future applications use of this very promising technique.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf