We determine the power dependence of dispersion-managed solitons on map strength and average dispersion, using a combination of numerical simulations and the variational approach. In particular, we investigate the behavior near zero dispersion and identify the region of existence of dispersion-managed solitons in the average normal-dispersion regime.
With regards to their potential to improving the pulse-based regimes in optical communication networks, dispersion-managed solitons in a fiber link including guiding filters and compensating gain were investigated. Combining the variational approximation and the perturbative treatment of the filtering and gain, stationary regimes are predicted. Among other features, the minimum map strength necessary for the existence of the pulses when path-averaged dispersion (PAD) is zero or normal is absent, rather, a minimum necessary normalized power for any PAD exists.
A directional, in-fiber optofluidic magnetometer based on a microstructured optical fiber (MOF) Bragg-grating infiltrated with a ferrofluidic defect is presented. Upon application of a magnetic field, the ferrofluidic defect moves along the length of the MOF Bragg grating, modifying its reflection spectrum. The magnetometer is capable of measuring magnetic fields from 317 to 2500 G. The operational principle of such in-fiber magnetic field probe allows the elaboration of directional measurements of the magnetic field flux.
We describe a novel optofluidic fiber arrangement that allows for nonlinear effects enhancement between fluids and laser light while suppressing the generation of cavitation bubbles. By filling this optofluidic system with toluene and pumping it with a nanosecond microchip laser, we demonstrate the efficient generation of a broadband Raman frequency comb spanning from 532 to more than 1000 nm. It is further shown that the Raman frequency comb dramatically broadens toward broadband continuum light due to the stimulated Raman-Kerr scattering.
An optical amplification-free deep reservoir computing (RC)-assisted high-baudrate intensity modulation direct detection (IM/DD) system is experimentally demonstrated using a 100G externally modulated laser operated in C-band. We transmit 112 Gbaud 4-level pulse amplitude modulation (PAM4) and 100 Gbaud 6-level PAM (PAM6) signals over a 200-m single-mode fiber (SMF) link without any optical amplification. The decision feedback equalizer (DFE), shallow RC, and deep RC are adopted in the IM/DD system to mitigate impairment and improve transmission performance. Both PAM transmissions over a 200-m SMF with bit error rate (BER) performance below 6.25% overhead hard-decision forward error correction (HD-FEC) threshold are achieved. In addition, the BER of the PAM4 signal is below the KP4-FEC limit after 200-m SMF transmission enabled by the RC schemes. Thanks to the use of a multiple-layer structure, the number of weights in deep RC has been reduced by approximately 50% compared with the shallow RC, whereas the performance is comparable. We believe that the optical amplification-free deep RC-assisted high-baudrate link has a promising application in intra-data center communications.
We investigate the nonlinear generation and dynamics of ghost pulses in high-speed strongly dispersion-managed fiber-optic communication systems. Particular consideration is given to the importance of system parameters for the properties of the emerging ghost pulses. Conclusions are drawn about the growth rate and the temporal position of the ghost pulses in different systems.
The nonlinear effects of amplitude jitter and ghost pulse generation, which are present in strongly dispersion-managed optical communication systems can be suppressed by alternation of the phase of the bits. A physical explanation for this effect is given that shows that with suitably chosen phase modulations the processes that give rise to the nonlinear effects will counteract each other.
For coupled linear cavity-random fiber Raman lasers, for the first time, to the best of our knowledge, we demonstrate a new mechanism of emergence of the random pulses, with the anomalous statistics satisfying optical rogue waves’ criteria experimentally. The rogue waves appear as a result of the coupling of two Raman cascades, namely, a linear cavity laser with a wavelength of 1.55 µm and a random laser with a wavelength nearly 1.67 µm, along with coupling of the orthogonal states of polarization (SOPs). The coherent coupling of SOPs causes localization of the trajectories in the vicinity of these states, whereas polarization instability drives escape taking the form of chaotic oscillations. Antiphase dynamics in two cascades result in the suppression of low amplitude chaotic oscillations and enable the anomalous spikes, satisfying rogue waves criteria.
Recent advancements have brought significant attention to photonic terahertz (THz)-integrated sensing and communication (ISAC) systems. In this work, we present an adaptive frequency offset (FO) compensation method for dual-chirp-based ISAC waveforms, using the fractional Fourier transform (FrFT) method. The proposed scheme can enable frequency synchronization without a need for training preambles and exhibit robustness against system noise. We validate this approach through an experimental demonstration in a 300 GHz photonic THz-ISAC system with 20 Gbps quadrature-phase shift keying (QPSK) data transmission and 1.5 cm range resolution. The experiment successfully compensates for frequency offsets ranging from −5 to 5 GHz, achieving an estimation error of less than 0.08% and a chirp-pilot power overhead of 0.5%.
We study interaction-induced timing jitter in single-channel dispersion-managed return-to-zero ttransmission systems operating at high map strengths. An equation for the frequency and timing shifts of two interacting pulses is derived by a variational approach. The interaction can be of either an attractive or a repulsive character, and we show that the resultant timing jitter can be reduced by proper design of the dispersion map.
Gigabit free-space transmissions are experimentally demonstrated with a quantum cascaded laser (QCL) emitting at mid-wavelength infrared of 4.65 μm, and a commercial infrared photovoltaic detector. The QCL operating at room temperature is directly modulated using on–off keying and, for the first time, to the best of our knowledge, four- and eight-level pulse amplitude modulations (PAM-4, PAM-8). By applying pre- and post-digital equalizations, we achieve up to 3 Gbit/s line data rate in all three modulation configurations with a bit error rate performance of below the 7% overhead hard decision forward error correction limit of 3.8 × 10−3. The proposed transmission link also shows a stable operational performance in the lab environment.
Dissipative Kerr soliton (DKS) frequency combs, when generated within coupled cavities, exhibit exceptional performance concerning controlled initiation and power conversion efficiency. Nevertheless, to fully exploit these enhanced capabilities, it is necessary to maintain the frequency comb in a low-noise state over an extended duration. In this study, we demonstrate the control and stabilization of super-efficient microcombs in a photonic molecule. Our findings demonstrate that there is a direct relation between effective detuning and soliton power, allowing the latter to be used as a setpoint in a feedback control loop. Employing this method, we achieve the stabilization of a highly efficient microcomb indefinitely, paving the way for its practical deployment in optical communications and dual-comb spectroscopy applications.
Gas modulation refractometry (GAMOR) is a methodology that can mitigate fluctuations and drifts in refractometry. This can open up for the use of non-conventional cavity spacer materials. In this paper, we report a dual-cavity system based on Invar that shows better precision for assessment of pressure than a similar system based on Zerodur. This refractometer shows for empty cavity measurements, up to 104 s, a white noise response (for N2) of 3 mPa s1=2. At 4303 Pa, the system has a minimum Allan deviation of 0.34 mPa (0.08 ppm) and a long-term stability (24 h) of 0.7 mPa. This shows that the GAMOR methodology allows for the use of alternative cavity materials.
Based on a recent experimental determination of the static polarizability and a first-principle calculation of the frequency-dependent dipole polarizability of argon, this work presents, by using a Fabry–Perot refractometer operated at 1550 nm, a realization of the SI unit of pressure, the pascal, for pressures up to 100 kPa, with an uncertainty of [(1.0 mPa)2 + (5.8 × 10−6 P)2 + (26 × 10−12P2)2]1/2. The work also presents a value of the molar polarizability of N2 at 1550 nm and 302.9146 K of 4.396572(26) × 10−6 m3/mol, which agrees well with previously determined ones.
Measuring microcombs in amplitude and phase provides unique insight into the nonlinear cavity dynamics, but spectral phase measurements are experimentally challenging. Here, we report a linear heterodyne technique assisted by electro-optic downconversion that enables differential phase measurement of such spectra with unprecedented sensitivity (−50 dBm) and bandwidth coverage (>110 nm in the telecommunications range). We validate the technique with a series of measurements, including single-cavity and photonic molecule microcombs. © 2022 Optica Publishing Group
We propose a new method for effective numerical simulation of transmission system performance and study of correlated noise evolution along an optical fiber with nonlinear parametric interaction between the amplified spontaneous emission (ASE) and the modulated optical signal. The method is based on an evaluation of the noise covariance matrix by using full nonlinear Schrödinger equation (NLSE) and an analytical model for the optical receiver. Using extensive brute-force Monte Carlo simulation as a verification tool, we test the accuracy of the method and illustrate the analytical receiver model limitations in the case of moderate as well as substantial growth of non-Gaussian optical noise along the optical fiber transmission link.
We propose a novel method for effective simulation of optical fiber transmission system performance with nonlinear interaction between the amplified spontaneous emission noise and the modulated optical signal employing on–off keying. The method enables a standard analytical description of the receiver operation even when the detected optical field obeys non-Gaussian statistics with a substantial amount of nonlinear phase noise accumulated along the fiber link due to strong signal–noise interaction.
With the progress of high-capacity radio access networks, ultra-dense small cells are rapidly being deployed in urban areas. As a result, the deployment of a large number of optical fibers in urban areas becomes a severe issue. In this Letter, we propose a hybrid fiber–terahertz (THz) mobile fronthaul system supporting flexible and high-order wireless signal transmission with the delta-sigma modulation. The photonic THz transmission is used as the seamless extension of fiber-based fronthaul in small cells. A 20-Gbit/s digital fiber–THz fronthaul system is experimentally demonstrated to validate the proposed scheme, with 10-km optical fiber transmission and 300-GHz wireless relay. Carrier aggregation of up to 10 40-MHz and 60-MHz 5G-new radio (5G-NR) channels at the radio carrier frequency of 3.9 GHz is reported. The design of quantization noise suppressed delta-sigma modulation enables the system to transmit orthogonal frequency division multiplexing (OFDM) modulation up to 16384 order quadrate amplitude modulation (QAM) mapping with the error vector magnitude (EVM) below 0.5%.
We experimentally demonstrate the transmission of a 200 Gbit/s discrete multitone (DMT) at the soft forward error correction limit in an intensity-modulation direct-detection system with a single C-band packaged distributed feedback laser and traveling-wave electro absorption modulator (DFB-TWEAM), digital-to-analog converter and photodiode. The bit-power loaded DMT signal is transmitted over 1.6 km standard single-mode fiber with a net rate of 166.7 Gbit/s, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz. Meanwhile, net rates of 174.2 Gbit/s and 179.5 Gbit/s are also demonstrated over 0.8 km SSMF and in an optical back-to-back case, respectively. The feature of the packaged DFB-TWEAM is presented. The nonlinearity-aware digital signal processing algorithm for channel equalization is mathematically described, which improves the signal-to-noise ratio up to 3.5 dB.
We propose a spectrally efficient digitized radio-over-fiber (D-RoF) system by grouping highly correlated neighboring samples of the analog signals into multidimensional vectors, where the k-means clustering algorithm is adopted for adaptive quantization. A 30 Gbit/s D-RoF system is experimentally demonstrated to validate the proposed scheme, reporting a carrier aggregation of up to 40 100 MHz orthogonal frequency division multiplexing (OFDM) channels with quadrate amplitude modulation (QAM) order of 4 and an aggregation of 10 100 MHz OFDM channels with a QAM order of 16384. The equivalent common public radio interface rates from 37 to 150 Gbit/s are supported. Besides, the error vector magnitude (EVM) of 8% is achieved with the number of quantization bits of 4, and the EVM can be further reduced to 1% by increasing the number of quantization bits to 7. Compared with conventional pulse coding modulation-based D-RoF systems, the proposed D-RoF system improves the signal-to-noise-ratio up to similar to 9 dB and greatly reduces the EVM, given the same number of quantization bits. (c) 2018 Optical Society of America