Laboratory simulations of Martian conditions are essential to develop quantitative models for the survival of organic biomarkers for future Mars exploration missions. In this work, we report the results of ultraviolet (UV) irradiation processing of biomarkers adsorbed on minerals under Martian-like conditions. Specifically, we prepared Mars soil analogues by doping forsterite, lizardite, antigorite, labradorite, natrolite, apatite and hematite minerals with organic compounds considered as potential biomarkers of extant terrestrial life such as the nucleotides adenosine monophosphate (AMP) and uridine monophosphate (UMP). We characterized such Mars soil analogues by means of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Confocal Raman Imaging Spectroscopy (CRIS), in order to get insights into the specific molecule-mineral interactions and explore the capabilities of different techniques to reveal diagnostic features of these biomarkers. Then, we performed irradiation experiments in the mid-UV spectral region under simulated Martian conditions and under terrestrial ambient conditions for comparison, monitoring the degradation process through DRIFTS. We observed that degradation under Martian-like conditions occurs much slower than in terrestrial ambient conditions. The minerals labradorite and natrolite mainly promote photodegradation of nucleotides, hematite and forsterite exhibit an intermediate degrading effect, while apatite, lizardite and antigorite do not show any significant catalytic effect on the degradation of the target organic species.
We present a synthesis of PIXL elemental data and SHERLOC Raman spectra collected on two targets investigated by the Perseverance rover during the first year of its exploration of Jezero Crater, Mars. The Bellegarde target (in the Máaz formation) and Dourbes target (in the Séítah formation) exhibit distinctive mineralogies that are an ideal case study for in situ analysis by SHERLOC and PIXL. Each instrument alone produces valuable data about the chemistry and spatial distribution of mineral phases at the sub-millimeter scale. However, combining data from both instruments provides a more robust interpretation that overcomes the limitations of either instrument, for example: 1) Detection of correlated calcium and sulfur in Bellegarde by PIXL is corroborated by the co-located detection of calcium sulfate by SHERLOC. 2) Detection of sodium and chlorine in Dourbes is consistent with either chloride or oxychlorine salts, but SHERLOC does not detect perchlorate or chlorate. 3) A Raman peak at 1120 cm−1 in Dourbes could be sulfate or pyroxene, but elemental abundances from PIXL at that location are a better match to pyroxene. This study emphasizes the importance of analyzing co-located data from both instruments together, to obtain a more complete picture of sub-millimeter-scale mineralogy measured in situ in Jezero crater, Mars, by the Perseverance rover. © 2022 The Authors