Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aulin, C.
    et al.
    RISE, Innventia.
    Salazar-Alvarez, G.
    Lindström, T.
    RISE, Innventia.
    High strength flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability2012In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, no 20, p. 6622-6628Article in journal (Refereed)
  • 2.
    Fornara, Andrea
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Enzymatic 'stripping' and degradation of PEGylated carbon nanotubes2014In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 6, no 24, p. 14686-14690Article in journal (Refereed)
  • 3.
    Guccini, Valentina
    et al.
    Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden.
    Yu, Shun
    RISE - Research Institutes of Sweden, Bioeconomy. Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden.
    Agthe, Michael
    Stockholm University, Sweden; University of Hamburg, Germany.
    Gordeyeva, Korneliya S.
    Stockholm University, Sweden.
    Trushkina, Yulia
    Stockholm University, Sweden.
    Fall, Andreas B.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy. Stockholm University, Sweden.
    Schütz, Christina
    Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden; University of Luxembourg, Luxembourg.
    Salazar-Alvarez, German
    Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden.
    Inducing nematic ordering of cellulose nanofibers using osmotic dehydration2018In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, no 48, p. 23157-23163Article in journal (Refereed)
    Abstract [en]

    The formation of nematically-ordered cellulose nanofiber (CNF) suspensions with an order parameter fmax ≈ 0.8 is studied by polarized optical microscopy, small-angle X-ray scattering (SAXS), and rheological measurements as a function of CNF concentration. The wide range of CNF concentrations, from 0.5 wt% to 4.9 wt%, is obtained using osmotic dehydration. The rheological measurements show a strong entangled network over all the concentration range whereas SAXS measurements indicate that at concentrations >1.05 wt% the CNF suspension crosses an isotropic-anisotropic transition that is accompanied by a dramatic increase of the optical birefringence. The resulting nanostructures are modelled as mass fractal structures that converge into co-existing nematically-ordered regions and network-like regions where the correlation distances decrease with concentration. The use of rapid, upscalable osmotic dehydration is an effective method to increase the concentration of CNF suspensions while partly circumventing the gel/glass formation. The facile formation of highly ordered fibers can result in materials with interesting macroscopic properties.

  • 4.
    Hjalmarsson, Nicklas
    et al.
    KTH Royal Institute of Technology, Sweden.
    Wallinder, Daniel
    Attana AB, Sweden.
    Glavatskih, Sergei
    KTH Royal Institute of Technology, Sweden; Ghent University, Belgium.
    Atkin, Rob
    University of Newcastle, Australia.
    Aastrup, Teodor
    Attana AB, Sweden.
    Rutland, Mark W.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Life Science. KTH Royal Institute of Technology, Sweden.
    Weighing the surface charge of an ionic liquid2015In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 7, no 38, p. 16039-16045Article in journal (Refereed)
    Abstract [en]

    Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively "weigh" the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions.

  • 5.
    Liu, Yingxin
    et al.
    Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden.
    Agthe, Michael
    Stockholm University, Sweden; University Of Hamburg, Germany.
    Salajková, Michaela
    University of Oslo, Norway.
    Gordeyeva, Korneliya S.
    Stockholm University, Sweden.
    Guccini, Valentina
    Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden.
    Fall, Andreas B.
    Stockholm University, Sweden.
    Salazar-Alvarez, German
    Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden.
    Schütz, Christina
    Stockholm University, Sweden; Wallenberg Wood Science Center, Sweden.
    Bergström, Lennart Magnus
    Stockholm University, Sweden.
    Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering2018In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, no 38, p. 18113-18118Article in journal (Refereed)
    Abstract [en]

    Assembly of bio-based nano-sized particles into complex architectures and morphologies is an area of fundamental interest and technical importance. We have investigated the assembly of sulfonated cellulose nanocrystals (CNC) dispersed in a shrinking levitating aqueous drop using time-resolved small angle X-ray scattering (SAXS). Analysis of the scaling of the particle separation distance (d) with particle concentration (c) was used to follow the transition of CNC dispersions from an isotropic state at 1-2 vol% to a compressed nematic state at particle concentrations above 30 vol%. Comparison with SAXS measurements on CNC dispersions at near equilibrium conditions shows that evaporation-induced assembly of CNC in large levitating drops is comparable to bulk systems. Colloidal states with d vs. c scalings intermediate between isotropic dispersions and unidirectional compression of the nematic structure could be related to the biphasic region and gelation of CNC. Nanoscale structural information of CNC assembly up to very high particle concentrations can help to fabricate nanocellulose-based materials by evaporative methods.

  • 6.
    Mukherjee, Sourav P.
    et al.
    Karolinska Institutet, Sweden .
    Gliga, Anda R.
    Karolinska Institutet, Sweden .
    Lazzaretto, Beatrice
    Karolinska Institutet, Sweden .
    Brandner, Birgit
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Fielden, Matthew
    KTH Royal Institute of Technology, Sweden.
    Vogt, Carmen
    KTH Royal Institute of Technology, Sweden.
    Newman, Leon
    University of Manchester, UK.
    Rodrigues, Artur F.
    University of Manchester, UK.
    Shao, Wenting
    University of Pittsburgh, USA.
    Fournier, Philip M.
    University of Pittsburgh, USA.
    Toprak, Mohammet S.
    KTH Royal Institute of Technology, Sweden.
    Star, Alexander
    University of Pittsburgh, USA.
    Kostarelos, Kostas
    University of Manchester, UK.
    Bhattacharya, Kunel
    Karolinska Institutet, Sweden .
    Fadeel, Bengt
    Karolinska Institutet, Sweden .
    Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic2018In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, no 3, p. 1180-1188Article in journal (Refereed)
    Abstract [en]

    Neutrophils were previously shown to digest oxidized carbon nanotubes through a myeloperoxidase (MPO)-dependent mechanism, and graphene oxide (GO) was found to undergo degradation when incubated with purified MPO, but there are no studies to date showing degradation of GO by neutrophils. Here we produced endotoxin-free GO by a modified Hummers' method and asked whether primary human neutrophils stimulated to produce neutrophil extracellular traps or activated to undergo degranulation are capable of digesting GO. Biodegradation was assessed using a range of techniques including Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and mass spectrometry. GO sheets of differing lateral dimensions were effectively degraded by neutrophils. As the degradation products could have toxicological implications, we also evaluated the impact of degraded GO on the bronchial epithelial cell line BEAS-2B. MPO-degraded GO was found to be non-cytotoxic and did not elicit any DNA damage. Taken together, these studies have shown that neutrophils can digest GO and that the biodegraded GO is non-toxic for human lung cells.

  • 7.
    Wetterskog, E
    et al.
    Uppsala University, Sweden.
    Castro, A
    SOLVE Research and Consultancy AB, Sweden.
    Zeng, L
    Chalmers University of Technology, Sweden .
    Petronis, Sarunas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Heinke, D
    nanoPET Pharma GmbH, Germany.
    Olsson, E
    Chalmers University of Technology, Sweden .
    Nilsson, L
    Lund University, Sweden; SOLVE Research and Consultancy AB, Sweden.
    Gehrke, N
    nanoPET Pharma GmbH, Germany.
    Svedlindh, P
    Uppsala University, Sweden.
    Size and property bimodality in magnetic nanoparticle dispersions: single domain particles vs. strongly coupled nanoclusters2017In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, no 12, p. 4227-4235Article in journal (Refereed)
    Abstract [en]

    The widespread use of magnetic nanoparticles in the biotechnical sector puts new demands on fast and quantitative characterization techniques for nanoparticle dispersions. In this work, we report the use of asymmetric flow field-flow fractionation (AF4) and ferromagnetic resonance (FMR) to study the properties of a commercial magnetic nanoparticle dispersion. We demonstrate the effectiveness of both techniques when subjected to a dispersion with a bimodal size/magnetic property distribution: i.e., a small superparamagnetic fraction, and a larger blocked fraction of strongly coupled colloidal nanoclusters. We show that the oriented attachment of primary nanocrystals into colloidal nanoclusters drastically alters their static, dynamic, and magnetic resonance properties. Finally, we show how the FMR spectra are influenced by dynamical effects; agglomeration of the superparamagnetic fraction leads to reversible line-broadening; rotational alignment of the suspended nanoclusters results in shape-dependent resonance shifts. The AF4 and FMR measurements described herein are fast and simple, and therefore suitable for quality control procedures in commercial production of magnetic nanoparticles.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8