Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Odenberger, Eva-Lis
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, IVF. Luleå University of Technology, Sweden.
    Perez Caro, Lluis
    RISE - Research Institutes of Sweden, Materials and Production, IVF. Luleå University of Technology, Sweden.
    Ņhlin, Hans
    Luleå University of Technology, Sweden.
    Oldenburg, Mats
    Luleå University of Technology, Sweden.
    Thermo-mechanical Material Characterization and Stretch-bend Forming of AA60162018In: IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X, Vol. 418, no 1Article in journal (Refereed)
    Abstract [en]

    Lightweight design has become increasingly in focus for the manufacturing industry. Global environmental challenges, goals and legislations imply that lighter and sustainable products are imperative to remain competitive. One example is stamped products made of aluminum alloys which are of interest to the automotive industry, where lightweight designs are essential. In order to increase formability and to produce more complex geometries in stamped aluminum components there is a need to develop hot forming techniques. The Finite Element Method (FEM) has enabled important advances in the study and design of competitive manufacturing procedures for metal parts. Predicting the final geometry of a component is a complex task, especially if the forming procedure occurs at elevated temperatures. This work presents selected results from thermo-mechanical material testing procedures, FE-analyses and forming validation tests in AA6016 material. The material tests are used to determine the thermo-mechanical anisotropic properties, strain rate sensitivity and formability (Forming Limit Curves, FLC) at temperatures up to 490°C. Stretch-bending tests are performed to compare predicted results with experimental observations such as punch force, strain levels, thinning, forming temperatures, springback and failure. It was found that the heat-treatment and forming at elevated temperatures substantially increased formability and that measured responses could in general be predicted if care was taken to model the initial blank temperatures, heat transfer and thermo-mechanical material properties. The room temperature case confirms the importance of considering anisotropy. © Published under licence by IOP Publishing Ltd.

  • 2.
    Varna, J.
    et al.
    Luleå University of Technology, Sweden.
    Zrida, H.
    Luleå University of Technology, Sweden.
    Fernberg, P.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    Microdamage analysis in thermally aged CF/polyimide laminates2016In: IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X, Vol. 139, no 1, article id 012050Article in journal (Refereed)
    Abstract [en]

    Microdamage in layers of CF Thornel® T650 8-harness satin woven composite with thermosetting polyimide NEXIMID® MHT-R resin was analysed. After cooling to room temperature multiple intra-bundle cracking due to tensile transverse thermal stresses was observed in the studied [(+45/-45)/(90/0)]2s composite. The composite was subjected to thermal cycling quantifying the increase of crack density in layers. Comparison of two ramps with the same lowest temperature shows that the highest temperature in the cycle has a significant detrimental effect. Exposure for 40 days to 288°C caused many new cracks after cooling down to room temperature. Both aged and not aged specimens were tested in uniaxial quasi-static tension. Cracking was analysed using fracture mechanics and probabilistic approaches. Cracking in off-axis layers was predicted based on Weibull analysis of the 90- layer. The thermal treatment degraded the cracking resistance of the surface layer and of the next layer.

  • 3.
    Wiklund, Daniel
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Larsson, Mats
    University College West, Sweden.
    Phenomenological friction model in deep drawing of aluminum sheet metals2018In: IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X, Vol. 418, no 1Article in journal (Refereed)
    Abstract [en]

    Friction is an important parameter in sheet metal forming since it influences the flow of material in the process. Consequently, it is also an important parameter in the design process of new stamping dies when numerical simulations are utilized. Today, the most commonly used friction model in forming simulations is Coulomb’s friction which is a strong simplification of the tribological system conditions and a contributory cause of discrepancy between simulation and physical experiments. There are micromechanical models available but with an inherent complexity that results in limited transparency for users. The objective in this study was to design a phenomenological friction model with a natural level of complexity when Coulomb’s friction is inadequate. The local friction model considers implicit properties of tool and sheet surface topography, lubricant viscosity, sheet metal hardness and strain, and process parameters such as sliding speed and contact pressure. The model was calibrated in a Bending-Under-Tension test (BUT) and the performance was evaluated in a cross shaped geometry (X-die). The results show a significant improvement of the simulation precision and provide the user a transparent tribological system. © Published under licence by IOP Publishing Ltd.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7