Hand hygiene, cleaning and disinfection are pre-requirements for hygiene management in hospital settings and the food industry. In order to facilitate risk management, different contamination scenarios and interventions need to be evaluated. In the present study data on transfer rates and reductions of Staphylococcus aureus were provided in an experimental set-up using artificial skin. Using this methodology, test persons were not exposed with pathogenic bacteria. An exposure assessment model was developed and applied to evaluate different contamination routes and hygiene interventions. The transfer rates of S. aureus from inoculated VITRO-SKIN® to fomites were calculated from blotting series. The VITRO-SKIN® was more prone to spread bacteria than fomites. When different surfaces were cleaned, the reduction of S. aureus varied between <1 and 7 log CFU. It could not be concluded that a certain coupon material, cleaning agent, cleaning wipe, soiling or humidity consistently resulted in a high or low reduction of S. aureus. The reduction of S. aureus and E. coli during hand washing was evaluated on artificial skin, VITRO-SKIN®. The reduction of E. coli on VITRO-SKIN® was similar to the log reduction obtained when washing human hands. The S. aureus count on a human hand was both calculated in different scenarios describing different contamination routes starting from a contaminated hand using the exposure assessment model, and measured on an experimental setup using VITRO-SKIN® for validation. A linear relationship was obtained between the analysed level of S. aureus and the calculated level. However, the calculated levels of S. aureus on the VITRO-SKIN® in the scenarios were 1–1.5 log lower than the analysed level. One of the scenarios was used to study the effect of interventions like hand washing and cleaning of surfaces.
Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) we investigated the GA-Z monomer-dimer equilibrium as well as the molar binding ratio of GA-Z to HSA. Using small angle X-ray scattering, we studied the structure of GA-Z as well as the complex between GA-Z and HSA. The results show that GA-Z is predominantly dimeric in solution at pH 7 and that it binds to monomeric as well as dimeric HSA. Furthermore, GA-Z binds to HSA both as a monomer and a dimer, and thus, it can be expected to stay bound also upon dilution following injection in the blood stream. The results from SAXS and binding studies indicate that the GA-Z dimer is formed between two target domains (Z-domains). The results also indicate that the binding of GA-Z to HSA does not affect the ratio between HSA dimers and monomers, and that no higher order oligomers of the complex are seen other than those containing dimers of GA-Z and dimers of HSA.
Here we demonstrate the use of a functional dopant as a fast and simple way to tune the chemical affinity and selectivity of polypyrrole films. More specifically, a boronic-functionalised dopant, 4-N-Pentylphenylboronic Acid (PBA), was used to provide to polypyrrole films with enhanced affinity towards diols. In order to prove the proposed concept, two model systems were explored: (i) the capture and the electrochemical detection of dopamine and (ii) the adhesion of bacteria onto surfaces. The chemisensor, based on overoxidised polypyrrole boronic doped film, was shown to have the ability to capture and retain dopamine, thus improving its detection; furthermore the chemisensor showed better sensitivity in comparison with overoxidised perchlorate doped films. The adhesion of bacteria, Deinococcus proteolyticus, Escherichia coli, Streptococcus pneumoniae and Klebsiella pneumoniae, onto the boric doped polypyrrole film was also tested. The presence of the boronic group in the polypyrrole film was shown to favour the adhesion of sugar-rich bacterial cells when compared with a control film (Dodecyl benzenesulfonate (DBS) doped film) with similar morphological and physical properties. The presented single step synthesis approach is simple and fast, does not require the development and synthesis of functional monomers, and can be easily expanded to the electrochemical, and possibly chemical, fabrication of novel functional surfaces and interfaces with inherent pre-defined sensing and chemical properties.
Enterotoxigenic Escherichia coli (ETEC) cause secretory diarrhea in children and travelers to endemic areas. ETEC spreads through the fecal-oral route. After ingestion, ETEC passes through the stomach and duodenum before it colonizes the lower part of the small intestine, exposing bacteria to a wide range of pH and environmental conditions. This study aimed to determine the impact of external pH and activity of the Cyclic AMP receptor protein (CRP) on the regulation of production and secretion of heat labile (LT) enterotoxin. ETEC strain E2863wt and its isogenic mutant E2863ΔCRP were grown in LBK media buffered to pH 5, 7 and 9. GM1 ELISA, cDNA and cAMP analyses were carried out on bacterial pellet and supernatant samples derived from 3 and 5 hours growth and from overnight cultures. We confirm that CRP is a repressor of LT transcription and production as has been shown before but we show for the first time that CRP is a positive regulator of LT secretion both in vitro and in vivo. LT secretion increased at neutral to alkaline pH compared to acidic pH 5 where secretion was completely inhibited. At pH 9 secretion of LT was optimal resulting in 600 percent increase of secreted LT compared to unbuffered LBK media. This effect was not due to membrane leakage since the bacteria were viable at pH 9. The results indicate that the transition to the alkaline duodenum and/or exposure to high pH close to the epithelium as well as activation of the global transcription factor CRP are signals that induce secretion of the LT toxin in ETEC.
Viral sewage metagenomics is a novel field of study used for surveillance, epidemiological studies, and evaluation of waste water treatment efficiency. In raw sewage human waste is mixed with household, industrial and drainage water, and virus particles are, therefore, only found in low concentrations. This necessitates a step of sample concentration to allow for sensitive virus detection. Additionally, viruses harbor a large diversity of both surface and genome structures, which makes universal viral genomic extraction difficult. Current studies have tackled these challenges in many different ways employing a wide range of viral concentration and extraction procedures. However, there is limited knowledge of the efficacy and inherent biases associated with these methods in respect to viral sewage metagenomics, hampering the development of this field. By the use of next generation sequencing this study aimed to evaluate the efficiency of four commonly applied viral concentrations techniques (precipitation with polyethylene glycol, organic flocculation with skim milk, monolithic adsorption filtration and glass wool filtration) and extraction methods (Nucleospin RNA XS, QIAamp Viral RNA Mini Kit, NucliSENS® miniMAG®, or PowerViral® Environmental RNA/DNA Isolation Kit) to determine the viriome in a sewage sample. We found a significant influence of concentration and extraction protocols on the detected viriome. The viral richness was largest in samples extracted with QIAamp Viral RNA Mini Kit or PowerViral® Environmental RNA/DNA Isolation Kit. Highest viral specificity were found in samples concentrated by precipitation with polyethylene glycol or extracted with Nucleospin RNA XS. Detection of viral pathogens depended on the method used. These results contribute to the understanding of method associated biases, within the field of viral sewage metagenomics, making evaluation of the current literature easier and helping with the design of future studies.
Garnets from disparate geographical environments and origins such as oxidized soils and river sediments in Thailand host intricate systems of microsized tunnels that significantly decrease the quality and value of the garnets as gems. The origin of such tunneling has previously been attributed to abiotic processes. Here we present physical and chemical remains of endolithic microorganisms within the tunnels and discuss a probable biological origin of the tunnels. Extensive investigations with synchrotron-radiation X-ray tomographic microscopy (SRXTM) reveal morphological indications of biogenicity that further support a euendolithic interpretation. We suggest that the production of the tunnels was initiated by a combination of abiotic and biological processes, and that at later stages biological processes came to dominate. In environments such as river sediments and oxidized soils garnets are among the few remaining sources of bio-available Fe2+, thus it is likely that microbially mediated boring of the garnets has trophic reasons. Whatever the reason for garnet boring, the tunnel system represents a new endolithic habitat in a hard silicate mineral otherwise known to be resistant to abrasion and chemical attack.
We describe here the development of stable classical and El Tor V. cholerae O1 strains of the Hikojima serotype that co-express the Inaba and Ogawa antigens of O1 lipopolysaccharide (LPS). Mutation of the wbeTgene reduced LPS perosamine methylation and thereby gave only partial transformation into Ogawa LPS on the cell surface. The strains express approximately equal amounts of Inaba-and Ogawa-LPS antigens which are preserved after formalin-inactivation of the bacteria. Oral immunizations of both inbred and outbred mice with formalin-inactivated whole-cell vaccine preparations of these strains elicited strong intestinal IgA anti-LPS as well as serum vibriocidal antibody responses against both Inaba and Ogawa that were fully comparable to the responses induced by the licensed Dukoral vaccine. Passive protection studies in infant mice showed that immune sera raised against either of the novel Hikojima vaccine strains protected baby mice against infection with virulent strains of both serotypes. This study illustrates the power of using genetic manipulation to improve the properties of bacteria strains for use in killed whole-cell vaccines.
Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation. © 2017 Lind et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance.
The production of concrete is one of the most significant contributors to global greenhouse gas emissions. This work focuses on bio-cementation-based products and their potential to reduce global warming potential (GWP). In particular, we address a proposed bio-cementation method employing bacterial metabolism in a two-step process of limestone dissolution and recrystallisation (BioZEment). A scenario-based techno-economic analysis (TEA) is combined with a life cycle assessment (LCA), a market model and a literature review of consumers’ willingness to pay, to compute the expected reduction of global GWP. Based on the LCA, the GWP of 1 ton of BioZEment is found to be 70–83% lower than conventional concrete. In the TEA, three scenarios are investigated: brick, precast and onsite production. The results indicate that brick production may be the easiest way to implement the products, but that due to high cost, the impact on global GWP will be marginal. For precast production the expected 10% higher material cost of BioZEment only produces a marginal increase in total cost. Thus, precast production has the potential to reduce global GWP from concrete production by 0–20%. Significant technological hurdles remain before BioZEment-based products can be used in onsite construction scenarios, but in this scenario, the potential GWP reduction ranges from 1 to 26%. While the potential to reduce global GWP is substantial, significant efforts need to be made both in regard to public acceptance and production methods for this potential to be unlocked. © 2019 Myhr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The hospital environment represents an important mediator for the transmission of healthcare-associated infections through direct and indirect hand contact with hard surfaces and textiles. In this study, bacteria on high-touch sites, including textiles and hard surfaces in two care wards in Sweden, were identified using microbiological culture methods and 16S rDNA sequencing. During a cross-sectional study, 176 high-touch hard surfaces and textiles were identified and further analysed using microbiological culture for quantification of total aerobic bacteria, Staphylococcus aureus, Clostridium difficile and Enterobacteriacae. The bacterial population structures were further analysed in 26 samples using 16S rDNA sequencing. The study showed a higher frequency of unique direct hand-textile contacts (36 per hour), compared to hard surfaces (2.2 per hour). Hard surfaces met the recommended standard of ≤ 5 CFU/cm2 for aerobic bacteria and ≤ 1 CFU/cm2 for S. aureus (53% and 35%, respectively) to a higher extent compared to textiles (19% and 30%, respectively) (P = 0.0488). The number of bacterial genera was higher on textiles than on the hard surfaces. Staphylococcus (30.4%) and Corynebacterium (10.9%) were the most representative genera for textiles and Streptococcus (13.3%) for hard surfaces. The fact that a big percentage of the textiles did not fulfil the criteria for cleanliness, combined with the higher bacterial diversity, compared to hard surfaces, are indicators that textiles were bacterial reservoirs and potential risk vectors for bacterial transmission. However, since most of the bacteria found in the study belonged to the normal flora, it was not possible to draw conclusions of textiles and hard surfaces as sources of healthcare associated infections. 2023 Nygren et al.
We investigated if the transcriptional response of Salmonella Typhimurium to temperature and acid variations was hysteretic, i.e. whether the transcriptional regulation caused by environmental stimuli showed memory and remained after the stimuli ceased. The transcriptional activity of non-replicating stationary phase cells of S. Typhimurium caused by the exposure to 45°C and to pH 5 for 30 min was monitored by microarray hybridizations at the end of the treatment period as well as immediately and 30 minutes after conditions were set back to their initial values, 25°C and pH 7. One hundred and two out of 120 up-regulated genes during the heat shock remained up-regulated 30 minutes after the temperature was set back to 25°C, while only 86 out of 293 down regulated genes remained down regulated 30 minutes after the heat shock ceased. Thus, the majority of the induced genes exhibited hysteresis, i.e., they remained up-regulated after the environmental stress ceased. At 25°C the transcriptional regulation of genes encoding for heat shock proteins was determined by the previous environment. Gene networks constructed with up-regulated genes were significantly more modular than those of down-regulated genes, implying that down-regulation was significantly less synchronized than up-regulation. The hysteretic transcriptional response to heat shock was accompanied by higher resistance to inactivation at 50°C as well as cross-resistance to inactivation at pH 3; however, growth rates and lag times at 43°C and at pH 4.5 were not affected. The exposure to pH 5 only caused up-regulation of 12 genes and this response was neither hysteretic nor accompanied of increased resistance to inactivation conditions. Cellular memory at the transcriptional level may represent a mechanism of adaptation to the environment and a deterministic source of variability in gene regulation. © 2012 Pin et al.
This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles. In contrast, NOM did not induce agglomeration of the SiO2 NPs during the test duration (21 days). DHBA in concentrations of 0.1 and 1 mM was unable to stabilize the metal NPs for time periods longer than 6 h, whereas humic acid, at certain concentrations (20 mg/L) was more efficient (>24 h). The presence of NOM increased the amount of released metals into solution, in particular for Al and Cu, whereas the effect for Mn was minor. At least 10% of the particle mass was dissolved within 24 h and remained in solution for the metal NPs in the presence of NOM. Speciation modeling revealed that released Al and Cu predominantly formed complexes with NOM, whereas less complexation was seen for Mn. The results imply that potentially dispersed NPs of Cu, Al and Mn readily dissolve or sediment close to the source in freshwater of low salinity, whereas SiO2 NPs are more stable and therefore more mobile in solution. © 2018 Pradhan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Complex scientific data is becoming the norm, many disciplines are growing immensely data-rich, and higher-dimensional measurements are performed to resolve complex relationships between parameters. Inherently multi-dimensional measurements can directly provide information on both the distributions of individual parameters and the relationships between them, such as in nuclear magnetic resonance and optical spectroscopy. However, when data originates from different measurements and comes in different forms, resolving parameter relationships is a matter of data analysis rather than experiment. We present a method for resolving relationships between parameters that are distributed individually and also correlated. In two case studies, we model the relationships between diameter and luminescence properties of quantum dots and the relationship between molecular weight and diffusion coefficient for polymers. Although it is expected that resolving complicated correlated relationships require inherently multi-dimensional measurements, our method constitutes a useful contribution to the modelling of quantitative relationships between correlated parameters and measurements. We emphasise the general applicability of the method in fields where heterogeneity and complex distributions of parameters are obstacles to scientific insight.
Multiple fossil discoveries and taphonomic experiments have established the durability of keratin. The utility and specificity of antibodies to identify keratin peptides has also been established, both in extant feathers under varying treatment conditions, and in feathers from extinct organisms. Here, we show localization of feather-keratin antibodies to control and heat-treated feathers, testifying to the repeatability of initial data supporting the preservation potential of keratin. We then show new data at higher resolution that demonstrates the specific response of these antibodies to the feather matrix, we support the presence of protein in heat-treated feathers using ToF-SIMS, and we apply these methods to a fossil feather preserved in the unusual environment of sinter hot springs. We stress the importance of employing realistic conditions such as sediment burial when designing experiments intended as proxies for taphonomic processes occurring in the fossil record. Our data support the hypothesis that keratin, particularly the β-keratin that comprises feathers, has potential to preserve in fossil remains.
The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young’s modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces.
Organic molecules preserved in fossils provide a wealth of new information about ancient life. The discovery of almost unaltered complex organic molecules in well-preserved fossils raise the question of how common such occurrences are in the fossil record, how to differentiate between endogenous and exogenous sources for the organic matter and what promotes such preservation. The aim of this study was the in-situ analysis of a well-preserved vertebrate fossil from 48 Ma Eocene sediments in the Messel pit, Germany for preservation of complex biomolecules. The fossil was characterized using a variety of techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX), x-ray diffraction (XRD) and Raman spectroscopy. A suite of organic molecules was detected, including porphyrins, which given the context of the detected signal are most probably diagenetically altered heme originating from the fossil though a microbial contribution cannot be completely ruled out. Diagenetic changes to the porphyrin structure were observed that included the exchange of the central iron by nickel. Further analyses on the geochemistry of the fossil and surrounding sediments showed presence of pyrite and aluminosilicates, most likely clay. In addition, a carbonate and calcium phosphate dominated crust has formed around the fossil. This suggests that several different processes are involved in the preservation of the fossil and the organic molecules associated with it. Similar processes seem to have also been involved in preservation of heme in fossils from other localities. Copyright: © 2022 Siljeström et al.
The zeta potential (ZP) is a parameter commonly used to characterize metal nanoparticles (NPs) in solution. Such determinations are for example performed in nanotoxicology since the ZP influences e.g. the interaction between cells and different biomolecules. Four case studies on different metal NPs (Cu and Zn NPs, and citrate capped Ag NPs) are presented in this study in order to provide guidance on how to accurately interpret and report ZP data. Solutions of high ionic strength (150 mM NaCl) induce a higher extent of particle agglomeration (elucidated with Ag NPs) when compared with conditions in 10 mM NaCl, which further complicates the prediction of the ZP due to e.g. sedimentation and broadening of the zeta potential distribution. The particle size is seldom included specifically in the standard ways of determining ZP (Hückel and Smoluchowski approximations). However corrections are possible when considering approximations of the Henry function. This was seen to improve the analysis of NPs, since there are cases when both the Hückel and the Smulochowski approximations are invalid. In biomolecule-containing cell media (BEGM), the signal from e. g. proteins may interfere with the measured ZP of the NPs. The intensity distribution of the ZP of both the blank solution and the solution containing NPs should hence be presented in addition to the mean value. Due to an increased ionic strength for dissolving of metal NPs (exemplified by Zn NPs), the released metal ions must be considered when interpreting the zeta potential measurements. In this work the effect was however negligible, as the particle size was several hundred nm, conditions that made the Smoluchowski approximation valid despite an increased ionic strength. However, at low ionic strengths (mM range) and small-sized NPs (tens of nm), the effect of released metal ions can influence the choice of model for determining the zeta potential. Sonication of particle dispersions influences not only the extent of metal release but also the outermost surface oxide composition, which often results in an increased ZP. Surface compositional changes were illustrated for sonicated and non-sonicated Cu NPs. In all, it can be concluded that accurate measurements and interpretations are possible in most cases by collecting and reporting complementary data on characteristics such as particle size, ZP distributions, blank sample information, and particle oxide composition. © 2017, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
The global problem of microbial resistance to antibiotics has resulted in an urgent need to develop new antimicrobial agents. Natural antimicrobial peptides are considered promising candidates for drug development. Echinoderms, which rely on innate immunity factors in the defence against harmful microorganisms, are sources of novel antimicrobial peptides. This study aimed to isolate and characterise antimicrobial peptides from the Edible sea urchin Echinus esculentus. Using bioassay-guided purification and cDNA cloning, three antimicrobial peptides were characterised from the haemocytes of the sea urchin; two heterodimeric peptides and a cysteine-rich peptide. The peptides were named EeCentrocin 1 and 2 and EeStrongylocin 2, respectively, due to their apparent homology to the published centrocins and strongylocins isolated from the green sea urchin Strongylocentrotus droebachiensis. The two centrocin-like peptides EeCentrocin 1 and 2 are intramolecularly connected via a disulphide bond to form a heterodimeric structure, containing a cationic heavy chain of 30 and 32 amino acids and a light chain of 13 amino acids. Additionally, the light chain of EeCentrocin 2 seems to be N-terminally blocked by a pyroglutamic acid residue. The heavy chains of EeCentrocins 1 and 2 were synthesised and shown to be responsible for the antimicrobial activity of the natural peptides. EeStrongylocin 2 contains 6 cysteines engaged in 3 disulphide bonds. A fourth peptide (Ee4635) was also discovered but not fully characterised. Using mass spectrometric and NMR analyses, EeCentrocins 1 and 2, EeStrongylocin 2 and Ee4635 were all shown to contain post-translationally brominated Trp residues in the 6 position of the indole ring.