Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Coppel, L.G.
    et al.
    RISE, Innventia.
    Neuman, M.
    Edström, P.
    Extension of the Stokes equation for layered constructions to fluorescent turbid media2012In: Optical Society of America. Journal A: Optics, Image Science, and Vision, ISSN 1084-7529, E-ISSN 1520-8532, no 4, p. 574-578Article in journal (Refereed)
  • 2.
    Gerosa, Rodrigo M.
    et al.
    Mackenzie Presbyterian University, Brazil.
    Sudirman, Aziza
    RISE, Swedish ICT, Acreo, Fiber Optics. KTH Royal Institute of Technology, Sweden.
    Menezes, Leonardo de S.
    Federal University of Pernambuco, Brazil.
    Margulis, Walter
    RISE, Swedish ICT, Acreo, Fiber Optics. KTH Royal Institute of Technology, Sweden.
    de Matos, Christiano J. S.
    Mackenzie Presbyterian University, Brazil.
    All-fiber high repetition rate dye laser2015In: Optical Society of America. Journal A: Optics, Image Science, and Vision, ISSN 1084-7529, E-ISSN 1520-8532, Vol. 2, no 2, p. 186-193Article in journal (Refereed)
    Abstract [en]

    Optofluidic dye lasers may play a significant role in future laser applications in numerous areas, combining wavelength flexibility with integration and ease of operation. Nevertheless, no all-fiber integrated dye lasers have been demonstrated so far. In this paper, we report on a series of optofluidic all-fiber Rhodamine optical sources operating at a repetition rate as high as 1 kHz. Dye bleaching is avoided by circulating the Rhodamine dye during optical excitation. The laser radiation is extracted via conventional fibers that are spliced to the dye-filled capillary active medium. A tuneable amplified spontaneous emission source, a multimode laser, and a few transverse-mode laser are demonstrated by adjusting the setup. Threshold pump energies as low as similar to 1 mu J and slope efficiencies of up to mu 9% were obtained, indicating the potential for realworld applications in areas such as spectroscopy and biomedicine.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf