Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Arrhenius, Karine
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Karlsson, Anders
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Hakonen, Aron
    Ohlson, Lars
    Fordonsgas Sverige AB, Sweden.
    Yaghooby, Haleh
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Safety and Transport, Measurement Science and Technology.
    Variations of fuel composition during storage at Liquefied Natural Gas refuelling stations2018In: Journal of Natural Gas Science and Engineering, ISSN 1875-5100, E-ISSN 2212-3865, Vol. 49, p. 317-323Article in journal (Refereed)
    Abstract [en]

    Liquefied Natural Gas (LNG) and Liquefied Biogas (LBG) utilization within the heavy duty transport sector is today a sustainable alternative to the use of oil. However, in spite of the high degree of insulation in the storage tank walls, it is impossible to fully avoid any net heat input from the surroundings. Due to some degree of vaporization this results in variation in gas composition during storage at refuelling stations, potentially leading to engine failures. Within this study, a vaporizer/sampler has been built and tested at a station delivering liquefied biomethane (LBG) and occasionally; such in this case, LNG to heavy and medium duty trucks. The vaporizer/sampler has then been used to study the variation of the LNG composition in the storage tank during a two weeks period. The results clearly underline a correlation between the gas phase and the liquid phase as the concentration changes follow the same trend in both phases. Two opposite effects are assumed to influence the concentration of methane, ethane and propane in the liquid and in the gas phase. On one hand, because of the probable presence of not fully mixed layers in the storage tank and due to vehicles being refuelled, both liquid and gas phases are enriched in methane at the expense of ethane and propane. On the other hand, due to boil-off effect towards the end of the storage period, both liquid and gas phases are enriched in ethane and propane at the expense of methane.

  • 2.
    Hakonen, Aron
    et al.
    RISE - Research Institutes of Sweden. Sensor Visions AB, Sweden.
    Karlsson, Anders
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Lindman, Lena
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Particles in fuel-grade Liquefied Natural Gas2018In: Journal of Natural Gas Science and Engineering, ISSN 1875-5100, E-ISSN 2212-3865, Vol. 55, p. 350-353Article in journal (Refereed)
    Abstract [en]

    The utilization of Liquefied Natural Gas (LNG) in the heavy-duty transport sector is a convenient and cost-effective step towards a sustainable future. However, there are questions regarding LNG fuel quality and destructive particles for engines. Basically nothing is known about particles in the commercial LNG being fueled today. The gravimetric and SEM-EDX results here demonstrates that there are precarious metal and silicon dioxide particles in fuel-grade LNG that can clog and erode engine parts. Considering these results further research in the direction of this study, including standardized method development, is highly motivated.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10