Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Ballo, A
    et al.
    Agheli, H
    Lausmaa, Jukka
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
    Thomsen, P
    Petronis, S
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
    Nanostructured model implants for in vivo studies: influence of well-defined nanotopoghraphy on de novo bone formation on titanium implants2011In: International Journal of Nanomedicine, ISSN 1176-9114, E-ISSN 1178-2013, Vol. 6, no 1, p. 3415-3428Article in journal (Refereed)
    Abstract [en]

    An implantable model system was developed to investigate the effects of nanoscale surface properties on the osseointegration of titanium implants in rat tibia. Topographical nanostructures with a well-defined shape (semispherical protrusions) and variable size (60 nm, 120 nm and 220 nm) were produced by colloidal lithography on the machined implants. Furthermore, the implants were sputter-coated with titanium to ensure a uniform surface chemical composition. The histological evaluation of bone around the implants at 7 days and 28 days after implantation was performed on the ground sections using optical and scanning electron microscopy. Differences between groups were found mainly in the new bone formation process in the endosteal and marrow bone compartments after 28 days of implantation. Implant surfaces with 60 nm features demonstrated significantly higher bone-implant contact (BIC, 76%) compared with the 120 nm (45%) and control (57%) surfaces. This effect was correlated to the higher density and curvature of the 60 nm protrusions. Within the developed model system, nanoscale protrusions could be applied and systematically varied in size in the presence of microscale background roughness on complex screw-shaped implants. Moreover, the model can be adapted for the systematic variation of surface nanofeature density and chemistry, which opens up new possibilities for in vivo studies of various nanoscale surface-bone interactions.

  • 2.
    de Peppo, Giuseppe Maria
    et al.
    The New York Stem Cell Foundation Research Institute, USA; Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Agheli, Hossein
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Karlsson, Camilla
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Ekström, Karin
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Brisby, Helena
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Lennerås, Maria E.
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Gustafsson, Stefan
    BIOMATCELL, Sweden; Chalmers University of Technology, Sweden.
    Sjövall, Peter
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Funktionella material (KMf).
    Johansson, Anna Karin
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Olsson, Eva
    BIOMATCELL, Sweden; Chalmers University of Technology, Sweden.
    Lausmaa, Jukka
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Funktionella material (KMf).
    Thomsen, Peter
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Petronis, Sarunas
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Medicinteknik. BIOMATCELL, Sweden.
    Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro2014In: International Journal of Nanomedicine, ISSN 1176-9114, E-ISSN 1178-2013, Vol. 9, no 1, p. 2499-2515Article in journal (Refereed)
    Abstract [en]

    Background: Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role inthe osseointegration of implantable devices. Methods: In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, and 200 nm) to influence the morphology, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Results: We found that the proliferation and osteogenicdifferentiation of hMSCs was influenced by the size of the underlying structures, suggesting that size variations in topographic features at the nanoscale level, independently of chemistry, can be exploited to control hMSC behavior in a size-dependent fashion. Conclusion: Our studies demonstrate that colloidal lithography, in combination with coating technologies, can be exploited to investigate the cell response to well defined nanoscale topography and to develop next-generation surfaces that guide tissue regeneration and promote implant integration.

  • 3. Hulander, M
    et al.
    Lundgren, A
    Berglin, Mattias
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
    Ohrlander, M
    Lausmaa, Jukka
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
    Elwing, H
    Immune complement activation is attenuated by surface nanotopography2011In: International Journal of Nanomedicine, ISSN 1176-9114, E-ISSN 1178-2013, Vol. 6, p. 2653-2666Article in journal (Refereed)
    Abstract [en]

    The immune complement (IC) is a cell-free protein cascade system, and the first part of the innate immune system to recognize foreign objects that enter the body. Elevated activation of the system from, for example, biomaterials or medical devices can result in both local and systemic adverse effects and eventually loss of function or rejection of the biomaterial. Here, the researchers have studied the effect of surface nanotopography on the activation of the IC system. By a simple nonlithographic process, gold nanoparticles with an average size of 58 nm were immobilized on a smooth gold substrate, creating surfaces where a nanostructure is introduced without changing the surface chemistry. The activation of the IC on smooth and nanostructured surfaces was viewed with fluorescence microscopy and quantified with quartz crystal microbalance with dissipation monitoring in human serum. Additionally, the ability of pre-adsorbed human immunoglobulin G (IgG) (a potent activator of the IC) to activate the IC after a change in surface hydrophobicity was studied. It was found that the activation of the IC was significantly attenuated on nanostructured surfaces with nearly a 50% reduction, even after pre-adsorption with IgG. An increase in surface hydrophobicity blunted this effect. The possible role of the curvature of the nanoparticles for the orientation of adsorbed IgG molecules, and how this can affect the subsequent activation of the IC, are discussed. The present findings are important for further understanding of how surface nanotopography affects complex protein adsorption, and for the future development of biomaterials and blood-contacting devices.

  • 4.
    Karazisis, Dimitrios
    et al.
    University of Gothenburg, Sweden.
    Ballo, Ahmed M.
    University of Gothenburg, Sweden; University of British Columbia, Canada.
    Petronis, Sarunas
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Medicinteknik. University of Gothenburg, Sweden.
    Agheli, Hossein
    University of Gothenburg, Sweden.
    Emanuelsson, Lena
    University of Gothenburg, Sweden.
    Thomsen, Peter
    University of Gothenburg, Sweden.
    Omar, Omar
    University of Gothenburg, Sweden.
    The role of well-defined nanotopography of titanium implants on osseointegration: Cellular and molecular events in vivo2016In: International Journal of Nanomedicine, ISSN 1176-9114, E-ISSN 1178-2013, Vol. 11, p. 1367-1382Article in journal (Refereed)
    Abstract [en]

    Purpose: Mechanisms governing the cellular interactions with well-defined nanotopography are not well described in vivo. This is partly due to the difficulty in isolating a particular effect of nanotopography from other surface properties. This study employed colloidal lithography for nanofabrication on titanium implants in combination with an in vivo sampling procedure and different analytical techniques. The aim was to elucidate the effect of well-defined nanotopography on the molecular, cellular, and structural events of osseointegration. Materials and methods: Titanium implants were nanopatterned (Nano) with semispherical protrusions using colloidal lithography. Implants, with and without nanotopography, were implanted in rat tibia and retrieved after 3, 6, and 28 days. Retrieved implants were evaluated using quantitative polymerase chain reaction, histology, immunohistochemistry, and energy dispersive X-ray spectroscopy (EDS). Results: Surface characterization showed that the nanotopography was well defined in terms of shape (semispherical), size (79±6 nm), and distribution (31±2 particles/μm2). EDS showed similar levels of titanium, oxygen, and carbon for test and control implants, confirming similar chemistry. The molecular analysis of the retrieved implants revealed that the expression levels of the inflammatory cytokine, TNF-α, and the osteoclastic marker, CatK, were reduced in cells adherent to the Nano implants. This was consistent with the observation of less CD163-positive macrophages in the tissue surrounding the Nano implant. Furthermore, periostin immunostaining was frequently detected around the Nano implant, indicating higher osteogenic activity. This was supported by the EDS analysis of the retrieved implants showing higher content of calcium and phosphate on the Nano implants. Conclusion: The results show that Nano implants elicit less periimplant macrophage infiltration and downregulate the early expression of inflammatory (TNF-α) and osteoclastic (CatK) genes. Immunostaining and elemental analyses show higher osteogenic activity at the Nano implant. It is concluded that an implant with the present range of well-defined nanocues attenuates the inflammatory response while enhancing mineralization during osseointegration.

  • 5.
    Petersson-Sjögren, M.
    et al.
    Lund University, Sweden.
    Jakobsson, J.
    Lund University, Sweden.
    Aaltonen, H. L.
    Lund University, Sweden; University of Washington, USA.
    Nicklasson, H.
    Skåne University Hospital, Sweden; MVIC Medicon Valley Inhalation Consortium AB, Sweden.
    Rissler, Jenny
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design. Lund University, Sweden.
    Engström, G.
    Lund University, Sweden.
    Wollmer, P.
    Skåne University Hospital, Sweden.
    Löndahl, J.
    Lund University, Sweden.
    Airspace Dimension Assessment with Nanoparticles (AiDA) in Comparison to Established Pulmonary Function Tests2022In: International Journal of Nanomedicine, ISSN 1176-9114, E-ISSN 1178-2013, Vol. 17, p. 2777-2790Article in journal (Refereed)
    Abstract [en]

    Background: Airspace Dimensions Assessment with nanoparticles (AiDA) is a new method for non-invasive measurement of pulmonary distal airspaces. The aim of this study was to compare AiDA measurements with other pulmonary function variables to better understand the potential of AiDA in a clinical context. Methods: AiDA measurements and pulmonary function tests were performed in 695 subjects as part of the Swedish CArdioPulmonary bioImage Study. The measurement protocol included spirometry, measurement of diffusing capacity of carbon monoxide, oscillometry and pulmonary computed tomography. AiDA indices were compared to all other pulmonary examination measurements using multivariate statistical analysis. Results: Our results show that AiDA measurements were significantly correlated with other pulmonary function examination indices, although covariance was low. We found that AiDA variables explained variance in the data that other lung function variables only influenced to a minor extent. Conclusion: We conclude that the AiDA method provides information about the lung that is inaccessible with more conventional lung function techniques. © 2022 Petersson-Sjögren et al.

  • 6.
    Svensson, Sara
    et al.
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Forsberg, Magnus
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Hulander, Mats
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Vazirisani, Forugh
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Palmquist, Anders
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Lausmaa, Jukka
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Funktionella material (KMf).
    Thomsen, Peter
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Trobos, Margarita
    Sahlgrenska Academy, Sweden; BIOMATCELL, Sweden.
    Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation2014In: International Journal of Nanomedicine, ISSN 1176-9114, E-ISSN 1178-2013, Vol. 9, no 1, p. 775-794Article in journal (Refereed)
    Abstract [en]

    The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructuredimplant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activationwere studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α(TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf