The animal food chain contributes significantly to emission of greenhouse gases (GHGs). We explored studies that addressed options to mitigate GHG emissions in the animal production chain and concluded that most studies focused on production systems in developed countries and on a single GHG. They did not account for the complex interrelated effects on other GHGs or their relation with other aspects of sustainability, such as eutrophication, animal welfare, land use or food security. Current decisions on GHG mitigation in animal production, therefore, are hindered by the complexity and uncertainty of the combined effect of GHG mitigation options on climate change and their relation with other aspects of sustainability. There is an urgent need to integrate simulation models at animal, crop and farm level with a consequential life cycle sustainability assessment to gain insight into the multidimensional and sometimes conflicting consequences of GHG mitigation options. © 2011 Elsevier B.V.
This paper summarizes key findings from a series of systematic reviews and comprehensive efforts to collate evidence and expert opinions on circular solutions for recovery and reuse of nutrients and carbon from different waste streams in the agriculture and wastewater sectors. We identify established and emerging approaches for transformation towards a more circular nutrient economy with relevance to SDGs 6 and 14. The paper cites the example of the Baltic Sea Region which has experienced decades of fertilizer overuse (1950s–1990s) and concomitant urban sources of excessive nutrients. Regulations and incentive policies combining the nitrogen, phosphorus and carbon cycles are necessary if circular nutrient technologies and practices are to be scaled up. Pricing chemical fertilizer at levels to reflect society's call for circularity is a central challenge.