Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Shenghui
    et al.
    Uppsala University, Sweden.
    Ngai, Edith
    University of Hong Kong, China.
    Ye, Fanghua
    University College London, UK.
    Voigt, Thiemo
    RISE Research Institutes of Sweden, Digital Systems, Data Science. Uppsala University, Sweden.
    Auto-Weighted Robust Federated Learning with Corrupted Data Sources2022In: ACM Transactions on Intelligent Systems and Technology, ISSN 2157-6904, E-ISSN 2157-6912, Vol. 13, no 5Article in journal (Refereed)
    Abstract [en]

    Federated learning provides a communication-efficient and privacy-preserving training process by enabling learning statistical models with massive participants without accessing their local data. Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions from outliers, systematic mislabeling, or even adversaries. In this article, we address this challenge by proposing Auto-weighted Robust Federated Learning (ARFL), a novel approach that jointly learns the global model and the weights of local updates to provide robustness against corrupted data sources. We prove a learning bound on the expected loss with respect to the predictor and the weights of clients, which guides the definition of the objective for robust federated learning. We present an objective that minimizes the weighted sum of empirical risk of clients with a regularization term, where the weights can be allocated by comparing the empirical risk of each client with the average empirical risk of the best ( p ) clients. This method can downweight the clients with significantly higher losses, thereby lowering their contributions to the global model. We show that this approach achieves robustness when the data of corrupted clients is distributed differently from the benign ones. To optimize the objective function, we propose a communication-efficient algorithm based on the blockwise minimization paradigm. We conduct extensive experiments on multiple benchmark datasets, including CIFAR-10, FEMNIST, and Shakespeare, considering different neural network models. The results show that our solution is robust against different scenarios, including label shuffling, label flipping, and noisy features, and outperforms the state-of-the-art methods in most scenarios.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf