Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Demidova, S. I.
    et al.
    Vernadsky Institute of Geochemistry and Analytical Chemistry, Russia.
    Whitehouse, M. J.
    Swedish Museum of Natural History, Sweden.
    Merle, R.
    Uppsala University, Sweden.
    Nemchin, A. A.
    Swedish Museum of Natural History, Sweden; Curtin University, Australia.
    Kenny, G. G.
    Swedish Museum of Natural History, Sweden.
    Brandstätter, F.
    Natural History Museum, Austria.
    Ntaflos, T.
    Vienna University, Austria.
    Dobryden, Illia
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    A micrometeorite from a stony asteroid identified in Luna 16 soil2022In: Nature Astronomy, E-ISSN 2397-3366, Vol. 6, no 5, p. 560-567Article in journal (Refereed)
    Abstract [en]

    Despite the intense cratering history of the Moon, very few traces of meteoritic material have been identified in the more than 380 kg of samples returned to Earth by the Apollo and Luna missions. Here we show that an ~200-µm-sized fragment collected by the Luna 16 mission has extra-lunar origins and probably originates from an LL chondrite with similar properties to near-Earth stony asteroids. The fragment has not experienced temperatures higher than 400 °C since its protolith formed early in the history of the Solar System. It arrived on the Moon, either as a micrometeorite or as the result of the break-up of a bigger impact, no earlier than 3.4 Gyr ago and possibly around 1 Gyr ago, an age that would be consistent with impact ages inferred from basaltic fragments in the Luna 16 sample and of a known dynamic upheaval in the Flora asteroid family, which is thought to be the source of L and LL chondrite meteorites. These results highlight the importance of extra-lunar fragments in constraining the impact history of the Earth–Moon system and suggest that material from LL chondrite asteroids may be an important component. © 2022, The Author(s)

  • 2. Lara-Avila, S.
    et al.
    Danilov, A.
    Golubev, D.
    He, Hans
    Chalmers University of Technology, Sweden.
    Kim, K. H.
    Yakimova, R.
    Lombardi, F.
    Bauch, T.
    Cherednichenko, S.
    Kubatkin, S.
    Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene2019In: Nature Astronomy, E-ISSN 2397-3366, Vol. 3, no 11, p. 983-988Article in journal (Refereed)
    Abstract [en]

    .

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf