Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Karazisis, Dimitrios
    et al.
    University of Gothenburg, Sweden.
    Omar, Omar
    Imam Abdulrahman Bin Faisal University, Saudi Arabia.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Thomsen, Peter
    University of Gothenburg, Sweden.
    Rasmusson, Lars
    University of Gothenburg, Sweden; Linköping University Hospital, Sweden.
    Molecular Response to Nanopatterned Implants in the Human Jaw Bone2021In: ACS Biomaterials Science & Engineering, E-ISSN 2373-9878, Vol. 7, no 12, p. 5878-5889Article in journal (Refereed)
    Abstract [en]

    Implant surface modification by nanopatterning is an interesting route for enhancing osseointegration in humans. Herein, the mol. response to an intentional, controlled nanotopog. pattern superimposed on screw-shaped titanium implants is investigated in human bone. When clin. implants are installed, addnl. two mini-implants, one with a machined surface (M) and one with a machined surface superimposed with a hemispherical nanopattern (MN), are installed in the posterior maxilla. In the second-stage surgery, after 6-8 wk, the mini-implants are retrieved by unscrewing, and the implant-adherent cells are subjected to gene expression anal. using quant. polymerase chain reaction (qPCR). Compared to those adherent to the machined (M) implants, the cells adherent to the nanopatterned (MN) implants demonstrate significant upregulation (1.8- to 2-fold) of bone-related genes (RUNX2, ALP, and OC). No significant differences are observed in the expression of the analyzed inflammatory and remodeling genes. Correlation anal. reveals that older patient age is associated with increased expression of proinflammatory cytokines (TNF-α and MCP-1) on the machined implants and decreased expression of pro-osteogenic factor (BMP-2) on the nanopatterned implants. Controlled nanotopog., in the form of hemispherical 60 nm protrusions, promotes gene expressions related to early osteogenic differentiation and osteoblastic activity in implant-adherent cells in the human jaw bone.

  • 2. Leblanc, K. J.
    et al.
    Niemi, S. R.
    Bennett, A. I.
    Harris, Kathryn L
    University of Florida, USA.
    Schulze, K. D.
    Sawyer, W. G.
    Taylor, C.
    Angelini, T. E.
    Stability of High Speed 3D Printing in Liquid-Like Solids2016In: ACS Biomaterials Science & Engineering, E-ISSN 2373-9878, Vol. 2, no 10, p. 1796-1799Article in journal (Refereed)
    Abstract [en]

    Fluid instabilities limit the ability of features to hold their shape in many types of 3D printing as liquid inks solidify into written structures. By 3D printing directly into a continuum of jammed granular microgels, these instabilities are circumvented by eliminating surface tension and body forces. However, this type of 3D printing process is potentially limited by inertial instabilities if performed at high speeds where turbulence may destroy features as they are written. Here, we design and test a high-speed 3D printing experimental system to identify the instabilities that arise when an injection nozzle translates at 1 m/s. We find that the viscosity of the injected material can control the Reynold's instability, and we discover an additional, unanticipated instability near the top surface of the granular microgel medium.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf