Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fellinger, Joris
    et al.
    Max Planck Institute for Plasma Physics, Germany.
    Richou, M.
    CEA Institute for Magnetic Fusion Research, France.
    Ehrke, G.
    Max Planck Institute for Plasma Physics, Germany.
    Endler, M.
    Max Planck Institute for Plasma Physics, Germany.
    Kunkel, F.
    Max Planck Institute for Plasma Physics, Germany.
    Naujoks, D.
    Max Planck Institute for Plasma Physics, Germany.
    Kremeyer, Th.
    Max Planck Institute for Plasma Physics, Germany.
    Menzel-Barbara, A.
    Max Planck Institute for Plasma Physics, Germany.
    Sieber, Th.
    Max Planck Institute for Plasma Physics, Germany.
    Lobsien, J-F
    Max Planck Institute for Plasma Physics, Germany.
    Neu, R.
    Max Planck Institute for Plasma Physics, Germany.
    Tretter, J.
    Max Planck Institute for Plasma Physics, Germany.
    Wang, Z.
    Max Planck Institute for Plasma Physics, Germany.
    You, J-H
    Max Planck Institute for Plasma Physics, Germany.
    Greuner, H.
    Max Planck Institute for Plasma Physics, Germany.
    Hunger, K.
    Max Planck Institute for Plasma Physics, Germany.
    Junghanns, P.
    Max Planck Institute for Plasma Physics, Germany.
    Schneider, O.
    Max Planck Institute for Plasma Physics, Germany.
    Wirtz, M.
    Forschungszentrum Jülich GmbH, Germany.
    Loewenhoff, Th.
    Forschungszentrum Jülich GmbH, Germany.
    Houben, A.
    Forschungszentrum Jülich GmbH, Germany.
    Litnovsky, A.
    Forschungszentrum Jülich GmbH, Germany.
    Fraysinnes, P-E
    CEA LITEN DTCH LCA, France.
    Emonot, P.
    CEA LITEN DTCH LCA, France.
    Roccella, S.
    ENEA Frascati Research Centre, Itay.
    Widlund, Ola
    RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.
    Koncar, B.
    Jožef Stefan Institute, Slovenia.
    Tekavčič, M.
    Jožef Stefan Institute, Slovenia.
    Tungsten based divertor development for Wendelstein 7-X2023In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 37, article id 101506Article in journal (Refereed)
    Abstract [en]

    Wendelstein 7-X, the world’s largest superconducting stellarator in Greifswald (Germany), started plasma experiments with a water-cooled plasma-facing wall in 2022, allowing for long pulse operation. In parallel, a project was launched in 2021 to develop a W based divertor, replacing the current CFC divertor, to demonstrate plasma performance of a stellarator with a reactor relevant plasma facing materials with low tritium retention. The project consists of two tasks: Based on experience from the previous experimental campaigns and improved physics modelling, the geometry of the plasma-facing surface of the divertor and baffles is optimized to prevent overloads and to improve exhaust. In parallel, the manufacturing technology for a W based target module is qualified. This paper gives a status update of project. It focusses on the conceptual design of a W based target module, the manufacturing technology and its qualification, which is conducted in the framework of the EUROfusion funded WPDIV program. A flat tile design in which a target module is made of a single target element is pursued. The technology must allow for moderate curvatures of the plasma-facing surface to follow the magnetic field lines. The target element is designed for steady state heat loads of 10 MW/m2 (as for the CFC divertor). Target modules of a similar size and weight as for the CFC divertor are assumed (approx. < 0.25 m2 and < 60 kg) using the existing water cooling infrastructure providing 5 l/s and roughly maximum 15 bar pressure drop per module. The main technology under qualification is based on a CuCrZr heat sink made either by additive manufacturing using laser powder bed fusion (LPBF) or by uniaxial diffusion welding of pre-machined forged CuCrZr plates. After heat treatment, the plasma-facing side of the heat sink is covered by W or if feasible by the more ductile WNiFe, preferably by coating or alternatively by hot isostatic pressing W based tiles with a soft OFE-Cu interlayer. Last step is a final machining of the plasma-exposed surface and the interfaces to the water supply lines and supports to correct manufacturing deformations.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf