Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lobov, Gleb S.
    et al.
    KTH Royal Institute of Technology, Sweden.
    Zhao, Yichen
    KTH Royal Institute of Technology, Sweden.
    Marinins, Alexandrs
    KTH Royal Institute of Technology, Sweden.
    Yan, Min
    KTH Royal Institute of Technology, Sweden.
    Li, Jiantong
    KTH Royal Institute of Technology, Sweden.
    Sugunan, Abhilash
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Thylén, Lars
    Hewlett-Packard Laboratories, US; KTH Royal Institute of Technology, Sweden.
    Wosinski, Lech
    KTH Royal Institute of Technology, Sweden.
    Östling, Mikael
    KTH Royal Institute of Technology, Sweden.
    Toprak, Muhammet S.
    KTH Royal Institute of Technology, Sweden.
    Popov, Sergei
    KTH Royal Institute of Technology, Sweden.
    Dynamic manipulation of optical anisotropy of suspended Poly-3-hexylthiophene nanofibers2016In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 4, no 10, p. 1651-1656Article in journal (Refereed)
    Abstract [en]

    Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​.

  • 2. ul Hasan, Kamran
    et al.
    Sandberg, Mats O
    RISE, Swedish ICT, Acreo.
    Nur, Omer
    Willander, Magnus
    Transparent Electrodes: ZnO/Polyfluorene Hybrid LED on an Efficient Hole-Transport Layer of Graphene Oxide Transparent Graphene Electrode2014In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 2, no 4, p. 304-Article in journal (Refereed)
    Abstract [en]

    An rGO/GO/PFO/ZnO/Al LED is fabricated via simple solution-based techniques by K. ul Hasan Hasan . On page 326, they show how graphene can be a simple solution-processable substitute to PEDOT:PSS as an effective holetransport (electron-blocking) layer, ITO as a transparent conductive electrode in optoelectronic devices. The wide emission range of this LED opens up prospects for demonstrating white light-emitting devices from this novel combination. This could pave the way for cheaper displays._x000D_  _x000D_

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9