Multidisciplinary approach is used to evaluate concrete with recycled concrete aggregates (RCA) from technical, environmental impacts and product circularity perspectives. Two RCA replacements investigated, RAC50: fine aggregates; RAC100: both coarse, fine aggregates. Reference, recycled concretes have same cement content, similar workability and compressive strength requirement, proven experimentally. RCA is sourced from pre-fab element discards of a Swedish plant, the logistical alternatives requiring environmental impact analysis. Alternatives are RCA crushing at plant and crushing at a different location including transportation. LCA shows transportation is second largest contributor after cement in all impact categories. RAC alternatives show lower total impact than reference concrete due to RCA replacement. A circularity index for concrete based on economic value of recirculated aggregates; supplements LCA for sustainability reporting. Circularity index results: RAC100 > RAC50 > RC. Combining circularity index with LCA helps optimize recycling process with regard to amount of recycled material and logistics respectively. © 2022 The Author(s).
The water absorption of crushed concrete aggregates (CCA) has a major influence on concrete workability. In order to determine the water absorption of CCA, a more porous material than natural aggregates, modifications to the standard pycnometer method are proposed as: (1) Water absorption is measured on a combined fraction CCA consisting of fine and coarse aggregates proportioned according to concrete recipe. (2) The CCA is pre-processed to mitigate sedimentation. (3) Saturated surface dry condition of aggregate is assessed by vacuum filtration and ocular technique. Water absorption development is measured at 0 min, 15 min, and 24 h. About 90% of the 24-h water absorption occurs in 15 min, value which is introduced in the concrete recipe; slump flow and compressive strength are determined. The modified pycnometer method shortens test duration, is operator insensitive and gives reliable water absorption result for CCA leading to concrete workability fitting industrial application. © 2020, © 2020 The Author(s).