Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Allen, LT
    et al.
    Fox, EJP
    Blute, I
    YKI – Ytkemiska institutet.
    Kelly, ZD
    Rochev, Y
    Keenan, AK
    Dawson,
    Interaction of soft condensed materials with living cells: Phenotype/transcriptome correlations for the hydrophobic effect2003In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 100, p. 6331-6336Article in journal (Refereed)
    Abstract [en]

    The assessment of biomaterial compatibility relies heavily on the analysis of macroscopic cellular responses to material interaction. However, new technologies have become available that permit a more profound understanding of the molecular basis of cell-biomaterial interaction. Here, both conventional phenotypic and contemporary transcriptomic (DNA microarray-based) analysis techniques were combined to examine the interaction of cells with a homologous series of copolymer films that subtly vary in terms of surface hydrophobicity. More specifically, we used differing combinations of N-isopropylacrylamide, which is presently used as an adaptive cell culture substrate, and the more hydrophobic, yet structurally similar, monomer N-tert-butylacrylamide. We show here that even discrete modifications with respect to the physiochemistry of soft amorphous materials can lead to significant impacts on the phenotype of interacting cells. Furthermore, we have elucidated putative links between phenotypic responses to cell-biomaterial interaction and global gene expression profile alterations. This case study indicates that high-throughput analysis of gene expression not only can greatly refine our knowledge of cell-biomaterial interaction, but also can yield novel biomarkers for potential use in biocompatibility assessment

  • 2.
    Allgardsson, Anders
    et al.
    FOI Swedish Defence Research Agency, Sweden.
    Berg, Lotta
    Umeå University, Sweden.
    Akfur, Christine
    FOI Swedish Defence Research Agency, Sweden.
    Hörnberg, Andreas
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Processum.
    Worek, Franz
    Bundeswehr Institute of Pharmacology and Toxicology, Germany.
    Linusson, Anna
    Umeå University, Sweden.
    Ekström, Fredrik J.
    FOI Swedish Defence Research Agency, Sweden.
    Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-62016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 20, p. 5514-5519Article in journal (Refereed)
    Abstract [en]

    Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.

  • 3. Deguchi, Shigeru
    et al.
    Shimoshige, Hirokazu
    Tsudome, Mikiko
    Mukai, Sada-atsu
    Corkery, Robert W
    YKI – Ytkemiska institutet.
    Ito, Susumu
    Microbial growth at hyperaccelerations up to 403,627 x g2011In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, no 19, p. 7997-8002Article in journal (Refereed)
    Abstract [en]

    It is well known that prokaryotic life can withstand extremes of temperature, pH, pressure, and radiation. Little is known about the proliferation of prokaryotic life under conditions of hyperacceleration attributable to extreme gravity, however. We found that living organisms can be surprisingly proliferative during hyperacceleration. In tests reported here, a variety of microorganisms, including Gram-negative Escherichia coli, Paracoccus denitrificans, and Shewanella amazonensis; Gram-positive Lactobacillus delbrueckii; and eukaryotic Saccharomyces cerevisiae, were cultured while being subjected to hyperaccelerative conditions. We observed and quantified robust cellular growth in these cultures across a wide range of hyperacceleration values. Most notably, the organisms P. denitrificans and E. coli were able to proliferate even at 403, 627 x g. Analysis shows that the small size of prokaryotic cells is essential for their proliferation under conditions of hyperacceleration. Our results indicate that microorganisms cannot only survive during hyperacceleration but can display such robust proliferative behavior that the habitability of extraterrestrial environments must not be limited by gravity.

  • 4.
    Nordgren, Niklas
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness2014In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 111, no 4, p. 1515-1520Article in journal (Refereed)
  • 5.
    Sani, N.
    et al.
    RISE, Swedish ICT, Acreo.
    Robertsson, M.
    Linköping University, Sweden.
    Cooper, P.
    De La Rue, UK.
    Wang, X.
    RISE, Swedish ICT, Acreo.
    Svensson, M.
    RISE, Swedish ICT, Acreo.
    Andersson Ersman, Peter
    RISE, Swedish ICT, Acreo.
    Norberg, Petronella
    RISE, Swedish ICT, Acreo.
    Nilsson, M.
    RISE, Swedish ICT, Viktoria.
    Nilsson, D.
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Liu, Xianjie
    Linköping University, Sweden.
    Hesselbom, H.
    Hesselbom Innovation and Development, Sweden.
    Akesso, L.
    De La Rue, UK.
    Fahlman, M.
    Linköping University, Sweden.
    Crispin, X.
    Linköping University, Sweden.
    Engquist, I.
    Linköping University, Sweden.
    Berggren, M.
    RISE - Research Institutes of Sweden, ICT, Acreo. Linköping University, Sweden.
    Gustafsson, G.
    RISE, Swedish ICT, Acreo.
    All-printed diode operating at 1.6 GHz2014In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 111, p. 11343-9Article in journal (Refereed)
    Abstract [en]

    Printed electronics are considered for wireless electronic tags sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication powering between mobile phones printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si NbSi2 particles, is manufactured on a flexible substrate at low temperature in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications._x000D_

  • 6.
    Siljeström, Sandra
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Funktionella material (KMf).
    Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito2013In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 110, no 46, p. 18496-18500Article in journal (Refereed)
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8