Thin ultra-high strength steel shaped as 700 mm long U-beams have been laser welded in overlap configuration to study the influence of welding sequence on distortions. Three different welding directions, three different energy inputs as well as stitch welding have been evaluated, using resistance spot welding (RSW) as a reference. Transverse widening at the ends and narrowing at the centre of the beam were measured. A clear correlation was found between the weld metal volume and distortion. For continuous welds there was also a nearly linear relationship between the energy input and distortion. However, the amount of distortion was not affected by a change in welding direction. Stitching and RSW reduced distortion significantly compared to continuous laser welding.
Geometrical distortions occur while welding, but the understanding of how and why they occur and how to control them is limited. The relation between the weld width, weld metal volume, total energy input, width of hard zone and distortions when laser welding three different thin sheet steels with varying strength has therefore been studied. Weld metal volume and total energy input show a good correlation with distortion for one steel at a time. The best correlation with the when including all three steel grades was the width of the hard zone composed of weld metal and the martensitic area in the heat affected zone. © 2017 Institute of Materials, Minerals and Mining.
This paper presents results of joining of AA5754 and DP800 based on the friction stir welding process. Joints were produced by the tool made of H13 tool steel which was allowed to penetrate through the aluminium sheet until reaching the surface of steel sheet without penetrating into it. This approach is an economic and robust way to operate the dissimilar welding process without excessive tool cost. Bonding was achieved by interfacial diffusion reactions between aluminium and iron with a formation of intermetallic compounds. The formation of brittle intermetallic compounds at the interface between the materials was studied. Three intermetallic phases were found at the interface including Al13Fe4, Al5Fe2 and Fe3Zn10. A range of process parameters was identified with a thickness of the intermetallic layers around 2 µm. Shear fracture failure mode was observed under overlap loading. The mechanisms of formation of the joints and factors controlling the strength were discussed.
In this work, friction stir welding was used to produce shear overlap joints between aluminium and a thermoplastic (AA 6111 to polyphenylene sulphide). The process uses the friction stir welding tool to create metallic chips which merge with the molten thermoplastic to form a joint. No special surface pretreatment is required before joining. Cross-sections show mechanical locking between the chipped polymer filled zone and the surrounding aluminium sheet. The effects of joining parameters such as rotational speed, translational speed and distance to backing were investigated in relation to the joint strength and failure mode. Optimum speeds and backing distances could be identified. The joint strength is dominated by mechanical interlocking between the chip and polymer filled zone and the aluminium sheet.
In this study, lap joints between AA5754 and DP1000 ultra-high strength steels were produced by friction stir welding. In order to investigate the roles of zinc on intermetallic phase formation and joint properties, steel substrates were used, two being galvanised coated and one uncoated. Joint performance has been evaluated in term of maximum tensile shear loading. The effects of the process parameter, translational speed; chemical compositions; and intermetallic phase formation on the mechanical properties have been investigated. The results show that joints with a galvanised layer exhibit higher strength as compared to the non-coated steel. A thicker galvanised layer promotes the presence of zinc in the aluminium matrix, resulting in better joint properties. The level of zinc contents in the aluminium matrix depends on process temperature and material circulation characteristics. Two stable Al-rich intermetallic phases, Al5Fe2 and Al13Fe4, were detected at the interface regardless of the coating conditions.
In normal production of resistance spot welded galvanised structures, it is difficult to completely avoid surface breaking cracks. Known key factors to cause cracking are zinc coating, electrode wear during subsequent welding and insufficient electrode cooling. In this report, an embrittlement mechanism was investigated that could be coupled to the galvanisation method for dual phase steels. With identical bulk material and weld parameters, the first 50 spot welds were crack free with electrogalvanised coating, while only 10 out of 50 were crack free with hot dip galvanised coating. Energy dispersive X-ray spectroscopy analysis of the worn electrode surfaces used for welding of the hot dip galvanised coating revealed areas of aluminium oxide. Since aluminium oxide is a very strong isolator, the electrical resistance will increase, which in turn is suggested to increase the surface temperature of the spot weld and thereby increase the probability for liquid metal embrittlement and surface cracks.