The new HIP cooling systems enable very fast cooling rates under isostatic pressure. This does not only enable shorter HIP cycles but also allows complete heat treatment cycles to be performed in one HIP cycle. It has been shown in previous studies that extreme pressures of several thousand bar can push phase transformation towards longer times. The new URQ HIP cooling systems give the opportunity to investigate the impact of pressures up to 2000 bar on phase transformation time dependency. For each of the two materials in this study, a comparison of austenite phase transformation time at 100 and 1700 bar was performed. The study was performed by isothermal heat treatment of specimens for a specific time followed by quenching. To evaluate the influence of pressure on hardenability, the phase fractions were evaluated using grid method on SEM images. The study found significant influence of HIP pressure on hardenability.
There are many applications where compound materials can be of interest, for example when different properties are needed in different parts of a component. Compound materials can be produced by hot isostatic pressing (HIP) of powder metallurgical materials. One aspect that should be considered in the design is the quality of the interface between the two different material compositions. Diffusion during HIP can cause formation of brittle phases in the interface or deteriorate properties by diffusion of alloying elements. The present work shows results from a study where different steel types were joined (quench and temper steel/air hardening steel/bearing steel with a tool steel/corrosion resistant martensitic steel). The evaluation was performed by computational predictions and by small scale HIP experiments that were evaluated by microstructure analysis and chemical analysis. © 2014 Institute of Materials, Minerals and Mining.
This study reports the variability of the fatigue strength of specimens manufactured by the laser powder bed fusion process with respect to their location on the build plate. Specimens from the right-hand and left-hand halves of the build plate were tested under high cycle fatigue. Comparison of the fatigue data suggests that the specimens manufactured on the right-hand half of the build plate have a higher fatigue strength than those manufactured on the left-hand half. One reason for the observed discrepancy in fatigue strength was the higher accumulation of spattered powder particles on the left-hand side as compared to the right-hand side of the build plate. These spattered particles are oxidised, and form defects such as inclusions within the specimen. © 2021 The Author(s)
In powder bed fusion additive processes the flow properties of the powder influence the quality of the final component and the efficiency of the process. In this investigation an attempt is made to identify flowability indicators which can describe the flow performance of the powder during the powder layering (i.e. recoating) step; common to all powder bed fusion processes. To this end, shear tests were performed by means of a powder rheometer. Bulk density, flow function and degree of cohesion were measured. The results suggest that there is a good correlation between the aforementioned parameters and the flowability of the powder during SLM processing. In addition, it was found that thermal treatments and tumbling enhance flowability. Thermal treatments were performed at 150, 200 and 250°C for a period of 10 min and in air.
The purpose of this paper is to compare, in terms of depth composition profile, a recycled hastelloy X powder and a virgin powder of the same alloy. We compare also the COPGLOW (compacted powder glow discharge analysis) method to the more established XPS (X-ray photoelectron spectroscopy) technique, in terms of similarity in reported elemental contents. A good match between the two methods was obtained on the surface of the powder particles (using an etching depth of 1 nm). Similar oxide layer thickness, of about 0.5–1 nm, was found on both powders by COPGLOW. Oxidation sensitive elements, such as Cr, were found on the surfaces by both XPS and COPGLOW on both powders. Surface content of Si appears to have decreased during use in selective laser melting. Finally, the two methods did not otherwise reveal any unexpected features in the depth profiles.
The addition of alloying elements in low alloyed PM steels in the form of a master alloy gives the advantage of introducing oxidation sensitive but less expensive elements and also allows manipulation in composition adjustment to achieve desired properties. In this work, interrupted sintering trials of the Fe-2MA-0.5C (%) (MA=Cu based master alloy) are performed. The behaviour of the liquid forming master alloy, for instance in terms of liquid phase formation, alloying element redistribution and effect on the dimensional changes, is investigated. The results show that master alloy particles melt over a range of temperature, which is also supported by the thermodynamic calculations. The low swelling in the master alloy system, compared to a reference system of Fe-2Cu-0.5C, is attributed to the progressive melting of the master alloy. The mean diffusion distance of Cu in Fe at the interparticle boundaries is 5.8 μm after 34 min of isothermal holding.
The effective use of alloying elements in powder metallurgical steels requires a deep understanding of their redistribution kinetics during sintering. In this work, interrupted sintering trials of Fe-2Cu and Fe-2Cu-0·5C compacts were performed. Moreover, diffusion simulations of Cu in c-Fe using Dictra were performed. It is found that transient liquid phase penetrates the Fe interparticle and grain boundaries in less than 3 min of holding time. However, C addition limits the penetration of liquid Cu, particularly into grain boundaries of large Fe particles. The results also show that the mean diffusion distance of Cu in c-Fe in the C added system is slightly lower than that in the C-free system at 3 min of holding time; however, after 33 min, the mean diffusion distance is similar in both systems. The diffusion distances of Cu in c-Fe, predicted by Dictra, are in good agreement with the measured values. © 2014 Institute of Materials, Minerals and Mining.