Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Diószegi, A.
    et al.
    Jönköping University, Sweden.
    Fourlakidis, Vasilios
    RISE, Swerea, SWECAST.
    Lora, R.
    Jönköping University, Sweden.
    Austenite dendrite morphology in lamellar graphite iron2015In: International Journal of Cast Metals Research, ISSN 1364-0461, E-ISSN 1743-1336, Vol. 28, no 5, p. 310-317Article in journal (Refereed)
    Abstract [en]

    Primary austenite has been underestimated in general when the theories of nucleation, solidification, microstructure formation and mechanical properties were established for cast iron and particularly for lamellar cast iron. The present work aims to investigate the primary austenite morphology of as cast samples of a hypoeutectic lamellar cast iron produced with different cooling rates. Morphological parameters as the area fraction primary austenite, the secondary dendrite arm spacing, the dendrite envelope surface, the coarseness of the primary dendrite expressed as the relation between the volume of the dendrite and its envelope surface and the coarseness of the interdendritic space also known as the hydraulic diameter are measured. Furthermore, the role of the size of the investigation area is revealed to be sequential investigation. A strong relation between all measured morphological parameters and the solidification time has been established, except the volume fraction of primary austenite, which is constant for all cooling conditions. 

  • 2.
    Ghasemi, Rohollah
    et al.
    Jönköping University, Sweden.
    Elmquist, Lennart
    Jönköping University, Sweden.
    Svensson, Henrik
    RISE, Swerea, SWECAST.
    König, Mathias
    Scania AB, Sweden.
    Jarfors, Anders Eric Wollmar
    Jönköping University, Sweden.
    Mechanical properties of Solid Solution-Strengthened CGI2016In: International Journal of Cast Metals Research, ISSN 1364-0461, E-ISSN 1743-1336, Vol. 29, no 1-2, p. 98-105Article in journal (Refereed)
    Abstract [en]

    Despite the increased usage of pearlitic compacted graphite iron (CGI) in heavy vehicle engines, poor machinability of this material remains as one of the main technical challenges as compared to conventional lamellar iron. To minimise the machining cost, it is believed that solution-strengthened CGI material with a ferritic matrix could bring an advantage. The present study focuses on the effect of solution strengthening of silicon and section thickness on tensile, microstructure and hardness properties of high-Si CGI materials. To do so, plates with thicknesses from 7 to 75 mm were cast with three different target silicon levels 3.7, 4.0 and 4.5 wt%. For all Si levels, the microstructure was ferritic with a very limited pearlite content. The highest nodularity was observed in 7 and 15 mm plate sections, respectively, however, it decreased as the plate thickness increased. Moreover, increasing Si content to 4.5 wt% resulted in substantial improvement up to 65 and 50% in proof stress and tensile strength, respectively, as compared to pearlitic CGI. However, adding up Si content to such a high level remarkably deteriorated elongation to failure. For each Si level, results showed that the Young’s modulus and tensile strength are fairly independent of the plate thickness (30–75 mm), however, a significant increase was observed for thin section plates, particularly 7 mm plate due to the higher nodularity in these sections. 

  • 3.
    Siafakas, Dimitrios
    et al.
    Jönköping University, Sweden.
    Matsushita, Taishi
    Jönköping University, Sweden.
    Lauenstein, Åsa
    RISE - Research Institutes of Sweden, Swerea, Swerea SWECAST.
    Ekerot, Sven
    Comdicast AB, Sweden.
    Jarfors, Anders E. W.
    Jönköping University, Sweden.
    A particle population analysis in Ti- and Al- deoxidized Hadfield steels2018In: International Journal of Cast Metals Research, ISSN 1364-0461, E-ISSN 1743-1336, Vol. 31, no 3, p. 125-134Article in journal (Refereed)
    Abstract [en]

    A quantitative analysis of the amount, size and number of particles that precipitate in situ in titanium- and aluminium-treated Hadfield steel cast during pilot-scale experiments has been performed. SEM with EDS and automated particle analysis abilities was utilized for the analysis. Additionally, Thermo-Calc was used for thermodynamic calculations and Magma 5 for solidification and cooling simulations. Predicted particles sizes calculated with a model based on the Ostwald ripening mechanism were compared with the experimental data. The effect of solute availability, cooling rate and deoxidation practice on the particle population characteristics was determined. It was concluded that the amount, size and number of precipitating particles in Hadfield steel castings is possible to be controlled according to certain requirements by a careful selection of proper additives in proper amounts and also by the optimization of the casting process in aspects of deoxidation timing and control of the cooling rate of the castings.

  • 4.
    Sjögren, Torsten
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Hållfasthet (BMh).
    Diaconu, Vasile Lucian
    Diószegi, Attila
    Skoglund, Peter
    Influence of molybdenum alloying on thermomechanical fatigue life of compacted graphite irons2012In: International Journal of Cast Metals Research, ISSN 1364-0461, E-ISSN 1743-1336, Vol. 25, no 5, p. 277-286Article in journal (Refereed)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10