Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Röding, Magnus
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience. Chalmers University of Technology, Sweden.
    Svensson, Peter
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Loren, Niklas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience. Chalmers University of Technology, Sweden.
    Functional regression-based fluid permeability prediction in monodisperse sphere packings from isotropic two-point correlation functions2017In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 134, p. 126-131Article in journal (Refereed)
    Abstract [en]

    We study fluid permeability in random sphere packings consisting of impermeable monodisperse hard spheres. Several different pseudo-potential models are used to obtain varying degrees of microstructural heterogeneity. Systematically varying solid volume fraction and degree of heterogeneity, virtual screening of more than 10,000 material structures is performed, simulating fluid flow using a lattice Boltzmann framework and computing the permeability. We develop a well-performing functional regression model for permeability prediction based on using isotropic two-point correlation functions as microstructural descriptors. The performance is good over a large range of solid volume fractions and degrees of heterogeneity, and to our knowledge this is the first attempt at using two-point correlation functions as functional predictors in a nonparametric statistics/machine learning context for permeability prediction.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10