Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Leer-Andersen, M
    et al.
    SSPA Sweden AB, Sweden.
    Larsson, L.
    Chalmers University of Technology, Sweden.
    An experimental/numerical approach for evaluating skin friction on full-scale ships with surface roughness2003In: Journal of Marine Science and Technology, ISSN 0948-4280, E-ISSN 1437-8213, Vol. 8, no 1, p. 26-36Article in journal (Refereed)
    Abstract [en]

    For an accurate evaluation of the increase in skin friction due to various surface topographies on ships, i.e. plate roughness, coatings, or bio fouling, both experimental measurements and a numerical evaluation of those measurements are necessary. The measurements are necessary as no other practical method exists to evaluate the skin friction coefficient on most surface topographies, and numerical evaluation is required to compute the roughness effects of varying ship types and speeds. Therefore, a method for measuring the skin friction coefficient for bio-fouled and structured surfaces at full-scale friction velocity is presented, and a validation of the design and measuring procedures is given. For the ship frictional resistance calculations, the Computational Fluid Dynamics (CFD) code SHIPFLOW has been modified to take the added friction into account.

  • 2.
    Strasser, G.
    et al.
    University of Tokyo, Japan.
    Takagi, K.
    University of Tokyo, Japan.
    Werner, Sofia
    University of Tokyo, Japan.
    Hollenbach, U.
    University of Tokyo, Japan.
    Tanaka, T.
    University of Tokyo, Japan.
    Yamamoto, K.
    University of Tokyo, Japan.
    Hirota, K.
    University of Tokyo, Japan.
    A verification of the ITTC/ISO speed/power trials analysis2015In: Journal of Marine Science and Technology, ISSN 0948-4280, E-ISSN 1437-8213, Vol. 20, no 1, p. 2-13Article in journal (Refereed)
    Abstract [en]

    Speed and power (S/P) trials are most important to guarantee the ship’s propulsive performance. However, it was pointed out that the existing procedures often give a good guideline, but are not specific and can introduce inconsistent results. Recently, ITTC and ISO have improved their S/P trials procedures and harmonized the two procedures. During the harmonization process, we have verified the ‘Mean of Means’ (MoM) method and the ‘Iterative’ method which are used as the current correction methods and the ‘Direct Power Method’ and the ‘Extended Power Method’ which are applied for the evaluation of the acquired data. The results of verification are presented in this paper. The results show that using the ‘MoM’ method for each power setting, two double runs should be made to keep the accuracy of S/P trials, and the ‘Iterative’ method leads to less errors in average of the tested cases when 1 + 2 + 2 double runs are used in the ‘MoM’ method, although the methods are equally adequate if the time periods between the runs are short enough. In specific cases, e.g. in case of large speed range and/or humps and hollows within the speed–power curve, the ‘MoM’ method has advantages over the ‘Iterative’ method. In case of current time history deviating from the assumed parabolic/sinusoidal trend and the change of the current within the time span of two double runs is very high, neither of the methods are applicable. Summarizing the results, the ‘Iterative’ method is fully compatible with the simple ‘Direct Power Method’

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf