Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Marklund, Magnus
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Gebart, Rikard
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Fletcher, D.F.
    Determination of the influence of uncertain model parameters in pressurized gasification of black liquor using a factorial design2005In: Combustion Science and Technology, ISSN 0010-2202, E-ISSN 1563-521X, Vol. 177, no 3, p. 435-453Article in journal (Refereed)
    Abstract [en]

    Introduction of pressurized gasification of black liquor in the pulping industry has the potential to give a significant increase in energy efficiency. However, uncertainties about the reliability and robustness of the technology are preventing large-scale market introduction. One important step toward a greater trust in the process reliability is the development of a better understanding of the sensitivity of the process to parameter variations. A computational fluid dynamics model for pressurized gasification of black liquor in an entrained-flow gasifier is presented and used for investigation of the effects of uncertainties in the specific heat capacity of black liquor, the radiation absorption coefficient, and the volatile devolatilization rate using factorial design methodology. It is found that all main factor effects, but none of the interaction effects, influence the considered responses: char conversion, maximum temperature, and outlet temperature. However, the main effects are found to be relatively small and the uncertainties in the examined model parameters would not invalidate the results from a design optimization with the presented model. Copyright © Taylor & Francis Inc.

  • 2. Somppi, J.L.
    et al.
    Kauppinen, E.I.
    Kurkela, J.
    Tapper, U.
    Ohman, M.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Nordin, Anders
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Johanson, B.
    Ultrafine ash particle formation during waste sludge incineration in fluidized bed reactors1998In: Combustion Science and Technology, ISSN 0010-2202, E-ISSN 1563-521X, Vol. 134, p. 433-455Article in journal (Refereed)
    Abstract [en]

    Ash formation during the bubbling fluidized bed (BFB) combustion of bark and pulp mill sludge has been studied on an industrial and bench scale. During co-firing in an industrial BFB a submicron fly ash mode was formed via condensation of volatilized K, Na, S and Cl species at 0.05-0.3 μm. The submicron mass mode below 0.3 μm made up 2.2-5.0% of the fly ash, while the share of the supermicron mass fraction was 93.6-97.2%. Elements depleted in the ultrafine ash were Ca, Si, Al, Mg, Fe, Mn, P and Ti. The bench-scale test showed that the ultrafine particle concentration was increased by a higher bed temperature and decreased due to sludge moisture. As, Cd, Pb and Rb were enriched in the ultrafine ash on a bench scale, while Ba, Co, Sr and V were depleted. Cu and Zn were enriched in the ultrafine ash during the combustion of dried sludge, but not when wet sludge was fired. Micron-size ash particles composed of non-volatile species, Ca, Si, Mg, Al, P and Mn, adhered to the bed sand, presumably by surface forces, and sintering densified the ash layer. © 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  • 3.
    Wiinikka, Henrik
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Gebart, Rikard
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    The influence of air distribution rate on particle emissions in fixed bed combustion of biomass2005In: Combustion Science and Technology, ISSN 0010-2202, E-ISSN 1563-521X, Vol. 177, no 9, p. 1747-1766Article in journal (Refereed)
    Abstract [en]

    Combustion of biomass under fixed-bed conditions will generate both coarse and fine particles that have a negative effect on technical performance or pose health hazards. It is therefore important to reduce the emissions of these particles that are already in the combustion process. The aim of this study was to experimentally investigate how different air supply strategies affect the particle emission in fixed-bed combustion of biomass. The air was supplied either through the grate, through a secondary air register, or equally divided between the two. The results showed that the air supply affects the emissions of both coarse and especially fine fly ash particles. The emissions of fine particles decrease when the air supply through the grate decreases, probably due to lower oxygen concentration in the fuel bed and thereby lower temperature in the burning char particles, which results in less vaporisation of ash elements. Hence, changing or optimizing the air supply strategy appears to be an attractive way to reduce the particle emissions already in the combustion process. Copyright © Taylor & Francis Inc.

  • 4.
    Wiinikka, Henrik
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Gebart, Rikard
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    The influence of fuel type on particle emissions in combustion of biomass pellets2005In: Combustion Science and Technology, ISSN 0010-2202, E-ISSN 1563-521X, Vol. 177, no 4, p. 741-763Article in journal (Refereed)
    Abstract [en]

    Three different biomass fuels (bark pellets, wood pellets and granulates made from hydrolysis residues) were burned under identical conditions to determine the effect of biomass type on the amount and composition of the combustion-generated particles under fixed-bed conditions. Significant differences in emissions of dust, submicron particles, and the shape of the particle number and mass size distributions were found between the different biomass fuels. For the particles that were dominated by ash elements, the particle emissions were correlated to the ash concentration in the unburned fuel. However, if the combustion condition allowed for organic particles, the "sooting" tendency of the fuel was found to become more important than the amount of ash in the fuel. Furthermore, the fuel type affects the particle emissions more than changes in reactor operating parameters. Copyright © Taylor & Francis Inc.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8