Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Lundgren, SM
    et al.
    Persson, K
    YKI – Ytkemiska institutet.
    Kronberg, B
    YKI – Ytkemiska institutet.
    Claesson, PM
    YKI – Ytkemiska institutet.
    Adsorption of fatty acids from alkane solution studied with quartz crystal microbalance2006In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 22, no 1, p. 15-20Article in journal (Refereed)
    Abstract [en]

    This paper describes the adsorption of the unsaturated fatty acids, oleic-, linoleic-, and linolenic acid onto steel coated quartz crystal surfaces from 2,2,4,4,6,8,8-heptamethylnonane as monitored by the quartz crystal microbalance (QCM) technique. It is shown that addition of fatty acid to the oil results in changes in bulk density and viscosity and that these changes must be considered before the sensed mass can be evaluated. The change in viscosity of the solution is larger for oleic acid than for linoleic acid and linolenic acid, which results in a larger correction for oleic acid with respect to bulk effects. After considering the effects due to changes in bulk properties, the influence of the viscoelastic properties of the adsorbed layer on the sensed mass was evaluated. The correction for the viscoelastic properties of the adsorbed layer was found to be very small for the systems studied. The sensed mass, at 1.1 weight percent, ranged from 0.5 mg/m2 for oleic acid to 5 mg/m2 for linolenic acid.

  • 2.
    Meurk, A
    YKI – Ytkemiska institutet.
    Microscopic stick-slip in friction force microscopy2000In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 8, p. 161-169Article in journal (Refereed)
    Abstract [en]

    Friction force measurements were performed on 2-hydroxy stearic acid (2-HSA) and 12-hydroxy stearic acid (12-HSA) coated silica surfaces in air using an atomic force microscope. The 2-HSA displayed viscoelastic behaviour with a yield point as the static–dynamic friction transition. Steady sliding motion was replaced by microscopic stick–slip at lower velocities and higher loads. Stick–slip motion was successfully described and fitted to a phenomenological model ascribed to interfacial material melting and freezing in periodic cycles. The stick–slip periodicity is of the same order as the contact diameter. The 12-HSA did not experience a yield point and exhibited steady sliding over the entire load and velocity regime. We attribute these observations to the difference in molecular configuration, shear strength and adsorption density of the stearic acid layers.

  • 3.
    Rutland, Mark
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Tribological Properties Mapping: Local Variation in Friction Coefficient and Adhesion2013In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 50, no 3, p. 387-395Article in journal (Refereed)
  • 4.
    Skedung, Lisa
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
    Danerlöv, Katrin
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
    Olofsson, Ulf
    Aikala, Maiju
    Niemi, Kari
    Kettle, John
    Rutland, Mark W.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
    Finger friction measurements on coated and uncoated printing papers2010In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 37, no 2, p. 389-399Article in journal (Refereed)
    Abstract [en]

    A macroscopic finger friction device consisting of a piezoelectric force sensor was evaluated on 21 printing papers of different paper grades and grammage. Friction between a human finger and the 21 papers was measured and showed that measurements with the device can be used to discriminate a set of similar surfaces in terms of finger friction. When comparing the friction coefficients, the papers group according to paper grade and the emerging trend is that the rougher papers have a lower friction coefficient than smoother papers. This is interpreted in terms of a larger contact area in the latter case. Furthermore, a decrease in friction coefficient is noted for all papers on repeated stroking (15 cycles back and forth with the finger). Complementary experiments indicate that both mechanical and chemical modifications of the surface are responsible for this decrease: (1) X-ray photoelectron spectroscopy measurements show that lipid material is transferred from the finger to the paper surface, (2) repeated finger friction measurements on the same paper sample reveal that only partial recovery of the frictional behaviour occurs and (3) profilometry measurements before and after stroking indicate small topographical changes associated with repeated frictional contacts.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7