Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Innings, F.
    et al.
    Hamberg, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
    Tragardh, C.
    Dynamic modelling of the deformation of a drop in a four-roll mill2005In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 60, no 17, p. 4771-4779Article in journal (Refereed)
    Abstract [en]

    The deformation of a drop flowing along the centre streamline of a four-roll mill (4RM) has been investigated. The velocities and elongation rates along the centre streamline in the 4RM were measured using particle tracking velocimetry. The deformation and position of the deforming drops were photographed with a video camera. A dynamic, one-dimensional, analytical simulation model describing the drop deformation has been developed. The model is based on Taylor's [1964. International Congress on Applied Mechanics, vol. 11, 790-796] static conical drop shape model, but has been extended to include elliptic drops undergoing rapid deformation. The model was incorporated into a numerical scheme using Matlab and the drop deformation in the 4RM was simulated. The simulations were compared with the results of the experiments with the help of a dynamic Weber number incorporating the exact effect of the continuous phase stress on the deformation of the drop. With a dynamic Weber number of 0.42 the agreement between the experiments and the simulations along the whole deformation process was excellent for all three drop diameters studied. With this model the deformation of drops of all sizes in different elongation fields can be calculated, for example sub-micron-sized drops in a high-pressure homogeniser. © 2005 Elsevier Ltd. All rights reserved.

  • 2. Regner, M.
    et al.
    Östergren, Karin
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
    Tragardh, C.
    Effects of geometry and flow rate on secondary flow and the mixing process in static mixers-a numerical study2006In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 61, no 18, p. 6133-6141Article in journal (Refereed)
    Abstract [en]

    A method based on computational fluid dynamics (CFD) for the characterization of static mixers using the Z factor, helicity and the rate of striation thinning is presented. These measures were found to be well-suited for the characterization of static mixers as they reflect the pressure drop, the formation of secondary flow, i.e. vortices, and their effect on the mixing process. Two commercial static mixers, the Kenics KM and Lightnin Series 45, have been characterized. In the mixers investigated, secondary flow is formed in the flow at the element intersections and due to the curvature of the mixer elements. The intensity of the vortices is higher in the Lightnin than the Kenics mixer due to edges in the middle of the Lightnin mixer elements. The formation of vortices affects the Z factor by an increase in the power requirement, and the rate of striation thinning by an increase in the stretching of the striations. The formation of vortices was observed at a Reynolds number of 10 in both mixers with aspect ratios of 1.5. However, the intensity of the vortices was greater in the Lightnin than the Kenics mixer, which was observed in not only the magnitude of the helicity, but also the Z factor, rate of striation thinning and the distribution of striation thickness. The distribution in striation thickness is shifted towards thin striations as the flow rate is increased from below to above the Reynolds numbers of which vortices were first observed, but some striations still pass the mixer elements almost unaffected, which can be seen in the skewness of the distribution of the striation thickness, which shifts from being negative to positive. © 2006 Elsevier Ltd. All rights reserved.

  • 3.
    Wiklund, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
    Shahram, I.
    Stading, Mats
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
    Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques2007In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 62, no 16, p. 4277-4293Article in journal (Refereed)
    Abstract [en]

    This paper describes a methodology for measuring rheological flow properties in-line, in real-time, based on simultaneous measurements of velocity profiles using an ultrasound velocity profiling (UVP) technique with pressure difference (PD) technology. The methodology allows measurements that are rapid, non-destructive and non-invasive and has several advantages over methods presented previously. The set-up used here allows direct access to demodulated echo amplitude data, thus providing an option to switch between time domain algorithms and algorithms based on FFT for estimating velocities, depending on the signal-to-noise ratio (SNR) and time resolution required. Software based on the MATLAB® graphical user interface (GUI) has been developed and provides a powerful and rapid tool for visualizing and processing the data acquired, giving rheological information in real-time and in excellent agreement with conventional methods. This paper further focuses on crucial aspects of the methodology: implementation of low-pass filter and singular value decomposition (SVD) methods, non-invasive measurements and determination of the wall positions using channel correlation and methods based on SVD. Measurements of sound velocity and attenuation of ultrasound in-line were introduced to increase measurement accuracy and provide an interesting approach to determine particle concentration in-line. The UVP-PD methodology presented may serve as an in-line tool for non-invasive, real-time monitoring and process control. © 2007 Elsevier Ltd. All rights reserved.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7