Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Carlsson, A.
    et al.
    Håkansson, K.
    Kvick, M.
    Lundell, F.
    RISE, Innventia.
    Söderberg, L.D.
    RISE, Innventia.
    Evaluation of steerable filter for detection of fibers in flowing suspensions2011In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, no 4, p. 987-996Article in journal (Refereed)
  • 2.
    Håkansson, Karl M.O.
    et al.
    KTH Royal Institute of Technology, Sweden.
    Kvick, Mathias
    KTH Royal Institute of Technology, Sweden.
    Lundell, Fredrik
    KTH Royal Institute of Technology, Sweden.
    Prahl Wittberg, Lisa
    KTH Royal Institute of Technology, Sweden.
    Söderberg, L. Daniel
    RISE, Innventia. KTH Royal Institute of Technology, Sweden.
    Measurement of width and intensity of particle streaks in turbulent flows2013In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 54, no 6, article id 1555Article in journal (Refereed)
    Abstract [en]

    Fibre streaks are observed in experiments with fibre suspensions in a turbulent half-channel flow. The preferential concentration methods, most commonly used to quantify preferential particle concentration, are in one dimension found to be concentration dependent. Two different new streak quantification methods are evaluated, one based on Voronoi analysis and the other based on artificial particles with an assigned fixed width. The width of the particle streaks and a measure of the intensity of the streaks, i.e. streakiness, are sought. Both methods are based on the auto-correlation of a signal, generated by summing images in the direction of the streaks. Common for both methods is a severe concentration dependency, verified in experiments keeping the flow conditions constant while the (very dilute) concentration of fibres is altered. The fixed width method is shown to be the most suitable method, being more robust and less computationally expensive. By assuming the concentration dependence to be related to random noise, an expression is derived, which is shown to make the streak width and the streakiness independent of the concentration even at as low concentrations as 0.05 particles per pixel column in an image. The streakiness is obtained by applying an artificial particle width equal to 20 % of the streak width. This artificial particle width is in this study found to be large enough to smoothen the correlation without altering the streakiness nor the streak width. It is concluded that in order to make quantitative comparisons between different experiments or simulations, the evaluation has to be performed with care and be very well documented.

  • 3.
    MacKenzie, Jordan
    et al.
    KTH Royal Institute of Technology, Sweden.
    Söderberg, Daniel
    KTH Royal Institute of Technology, Sweden.
    Swerin, Agne
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials. KTH Royal Institute of Technology, Sweden.
    Lundell, Fredrik
    KTH Royal Institute of Technology, Sweden.
    Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices2017In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 58, article id 51Article in journal (Refereed)
    Abstract [en]

    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least r¯=0.75'>r¯=0.75r¯=0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf