The paper describes an experimental and numerical study of size effect on concrete cylindrical specimens in splitting tensile test. Own experimental campaign was performed on specimens with 5 various diameters from D = 74, 105, 150, 192 and 250 mm with hardboard loading strips (distributed load according to standard methods) scaled proportionally to the specimen diameter. The crack opening-control system was applied to obtain the post-peak behaviour of all tested specimens including catastrophic behaviour (snap-back). The tested specimens at a certain point were unloaded and scanned with novel high-resolution micro tomography to analyse the macro cracks and phenomena like aggregate breakage, crack branching etc. at the aggregate level. Based on realistic mesostructure the discrete element method (DEM) 2D model of 3 specimens with diameters of D = 74, 150 and 250 mm were constructed and tested. The fracture was analysed at macro and micro-level in DEM and directly compared with microCT scans. DEM simulations revealed additional information related to the loss of material strength and ductility with increasing specimen size (size effect). The simulation and experimental results were in good agreement. © 2022 The Authors
Steady-state energy release rate (ERR) for fiber/matrix interface debond growth originated from fiber break in unidirectional composite is calculated using 3-D FEM models with hexagonal fiber arrangement. In the model the debonded fiber is central in the hexagonal unit which is surrounded by effective composite. The effect of neighboring fibers focusing on local fiber clustering on the ERR is analyzed by varying the distance between fibers in the unit. The steady-state ERR is calculated from potential energy difference between a unit in the bonded region far ahead of the debond front and a unit in the debonded region far behind the debond front. The ERR for different modes of crack propagation is obtained from a FEM model containing a long debond by analyzing the stress at the debond front.Results show that in mechanical axial tensile loading fracture Mode II is dominating, it has strong angular dependence (effect of closest fibers) but the average ERR is not sensitive to the local fiber clustering. In thermal loading the Mode III is dominating and the average ERR is highly dependent on the distance to neighboring fibers. However, for realistic loads the thermal ERR is much smaller than the mechanical. © 2016 Elsevier Ltd.