We discuss a parallel implementation of an agent-based simulation. Our approach allows to adapt a sequential simulator for large-scale simulation on a cluster of workstations. We target discrete-time simulation models that capture the behavior of Web users and Web sites. Web users are connected with each other in a graph resembling the social network. Web sites are also connected in a similar graph. Users are stateful entities. At each time step, they exhibit certain behaviour such as visiting bookmarked sites, exchanging information about Web sites in the "word-of-mouth" style, and updating bookmarks. The real-world phenomena of emerged aggregated behavior of the Internet population is studied. The system distributes data among workstations, which allows large-scale simulations infeasible on a stand-alone computer. The model properties cause traffic between workstations proportional to partition sizes. Network latency is hidden by concurrent simulation of multiple users. The system is implemented in Mozart that provides multithreading, dataflow variables, component-based software development, and network-transparency. Currently we can simulate up to 1 million Web users on 100 million Web sites using a cluster of 16 computers, which takes few seconds per simulation step, and for a problem of the same size, parallel simulation offers speedups between 11 and 14.