Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Vinas, Victor
    et al.
    Chalmers University of Technology, Sweden.
    Malm, Annika
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy. Chalmers University of Technology, Sweden.
    Pettersson, Thomas
    Chalmers University of Technology, Sweden.
    Overview of microbial risks in water distribution networks and their health consequences: Quantification, modelling, trends, and future implications2019In: Canadian journal of civil engineering (Print), ISSN 0315-1468, E-ISSN 1208-6029, Vol. 46, no 3, p. 149-159Article in journal (Refereed)
    Abstract [en]

    The water distribution network (WDN) is usually the final physical barrier preventing contamination of the drinking water before it reaches consumers. Because the WDN is at the end of the supply chain, and often with limited online water quality monitoring, the probability of an incident to be detected and remediated in time is low. Microbial risks that can affect the distribution network are: intrusion, cross-connections and backflows, inadequate management of reservoirs, improper main pipe repair and (or) maintenance work, and biofilms. Epidemiological investigations have proven that these risks have been sources of waterborne outbreaks. Increasingly since the 1990s, studies have also indicated that the contribution of these risks to the endemic level of disease is not negligible. To address the increasing health risks associated to WDNs, researchers have developed tools for risk quantification and risk management. This review aims to present the recent advancements in the field involving epidemiological investigations, use of quantitative microbial risk assessment (QMRA) for modelling, risk mitigation, and decision-support. Increasing the awareness of the progress achieved, but also of the limitations and challenges faced, will aid in accelerating the implementation of QMRA tools for WDN risk management and as a decision-support tool.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf