Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Nguyen, S.N.
    et al.
    Imperial College London, UK.
    Greenhalgh, E.S.
    Imperial College London, UK.
    Graham, J.M.R.
    Imperial College London, UK.
    Francis, A.
    Imperial College London, UK.
    Olsson, Robin
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Runway debris impact threat maps for transport aircraft2014In: Aeronautical Journal, ISSN 0001-9240, Vol. 118, no 1201, p. 229-266Article in journal (Refereed)
    Abstract [en]

    Large transport aircraft are particularly susceptible to impact damage from runway debris thrown up by the landing gear. A methodology was developed to predict the trajectories of stones lofted by the nose wheel and subjected to aerodynamic forces due to the wake behind the nose landing gear and beneath the aircraft. In conjunction with finite element modelling of the stone/ground/tyre contact mechanics, an analytical model was used to perform a stochastic prediction of the trajectories of runway stones to generate impact threat maps which showed the relative likelihood of stones impinging upon various areas on the underside of a C-130 Hercules. The impact envelopes for the C-130 extended three to eighteen metres behind the nose wheel and two metres either side of the centre of the aircraft. The impact threat maps were especially sensitive to the values of the coefficients of lift and drag acting on the stone during its flight.

  • 2.
    Nguyen, S.N.
    et al.
    Imperial College London.
    Greenhalgh, E.S.
    Imperial College London.
    Lannucci, L.
    Imperial College London.
    Olsson, Robin
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Curtis, P.T.
    Physical Sciences Department, Salisbury, UK.
    Improved models for runway debris lofting simulations2009In: Aeronautical Journal, ISSN 0001-9240, Vol. 113, no 1148, p. 669-681Article in journal (Refereed)
    Abstract [en]

    Numerical models used to simulate the lofting mechanisms of runway stones were developed to assess the threat to aircraft structures from runway debris impacts. An inflated aircraft tyre model, which was validated by comparison with experimental indentation tests, showed that over-rolling of stones under typical take-off conditions led to only modest vertical loft velocities of less than 5 m/s. Experiments using a drop weight impactor simulated a section of aircraft tyre descending upon stones. These tests demonstrated that lofting was achieved for impacts with low rubber thickness. However, for impacts with greater rubber thickness, lofting was suppressed. Using more realistic tyre geometries resulted in launches with backspin, but only horizontally along the ground in the direction of the tyre axis. The speed at which launches occurred was proportional to the rate of descent of the tyre section and would consequently determine the loft speeds due to potential asperity lofting.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7