Control of perennial weeds, such as Elymus repens, generally requires herbicides or intensive tillage. Alternative methods, such as mowing and competition from subsidiary crops, provide less efficient control. Fragmenting the rhizomes, with minimal soil disturbance and damage to the main crop, could potentially increase the efficacy and consistency of such control methods. This study's aim was to investigate whether fragmenting the rhizomes and mowing enhance the control of E. repens in a white clover sward. Six field experiments were conducted in 2012 and 2013 in Uppsala, Sweden, and Ås, Norway. The effect of cutting slits in the soil using a flat spade in a 10 × 10 cm or 20 × 20 cm grid and the effect of repeated mowing were investigated. Treatments were performed either during summer in a spring-sown white clover sward (three experiments) or during autumn, post-cereal harvest, in an under-sown white clover sward (three experiments). When performed in autumn, rhizome fragmentation and mowing reduced E. repens shoot biomass, but not rhizome biomass or shoot number. In contrast, when performed in early summer, rhizome fragmentation also reduced the E. repens rhizome biomass by up to 60%, and repeated mowing reduced it by up to 95%. The combination of the two factors appeared to be additive. Seasonal differences in treatment effects may be due to rhizomes having fewer stored resources in spring than in early autumn. We conclude that rhizome fragmentation in a growing white clover sward could reduce the amount of E. repens rhizomes and that repeated mowing is an effective control method, but that great seasonal variation exists. © 2017 The Authors.
Abstract There has been a longstanding and contentious debate about the future of glyphosate use in the European Union (EU). In November 2023, the European Commission approved the renewal of the use registration for glyphosate for a further 10?years. Nevertheless, the EU Farm to Fork strategy calls for a 50% reduction in pesticide use by 2030. In November 2022, the European Weed Research Society organised a 2 day workshop to identify critical glyphosate uses in current EU cropping systems and to review the availability of glyphosate alternatives. Workshop participants identified four current, critical uses in EU cropping systems; control and management of perennial weeds, weed control in conservation agriculture, vegetation management in tree and vine crops and herbicide resistance management. There are few herbicide alternatives that provide effective, economic, broad-spectrum control of weeds, particularly perennial weeds. Mechanical weed control, and in particular, soil cultivation is the most obvious glyphosate alternative. However, this is not possible in conservation agriculture systems and, in general, increased soil cultivation has negative impacts for soil health. Emerging technologies for precision weed control can enable more targeted use of glyphosate, greatly reducing use rates. These technologies also facilitate the use and development of alternative targeted physical weed control (e.g. tillage, lasers, electricity), reducing the energy and environmental costs of these approaches. In tree crops, the use of organic and inorganic mulches can reduce the need for glyphosate use. In general, reduced use of glyphosate will require an even greater focus on integrated weed management to reduce weed establishment in agroecosystems, increase weed management diversity and limit the use of alternative resistance-prone herbicides.
Without herbicides, the control of Elymus repens relies on intensive tillage, often in the form of repeated post-harvest stubble cultivations followed by ploughing. This is costly and time-consuming and also increases the risk of nitrogen leaching. Our aim was to quantify the controlling effect on E. repens of single and repeated cultivation and differing time of cultivation in relation to spring cereal harvest. A 2-year experiment was conducted at two sites in the south and east of Sweden in 2011-2012 and 2012-2013. We compared no, single and repeated tine cultivation followed by mouldboard ploughing; the single cultivation was performed directly after harvest or 20 days after harvest; when repeated, the first cultivation was performed immediately or 5 days after harvest, followed by a second cultivation 20 days after harvest. Tine cultivation in combination with mouldboard ploughing resulted in 50-70% lower rhizome biomass, and increased average subsequent cereal yields by 0-130% compared with ploughing alone. Large E. repens populations appeared to be more efficiently reduced by tine cultivation than smaller populations. A single tine cultivation 20 days after harvest tended to result in a higher E. repens shoot density and more rhizome biomass in the subsequent year than tine cultivation directly after harvest. Additional cultivation 20 days after harvest did not improve control of E. repens or the subsequent cereal grain yield, compared with a single cultivation conducted directly after harvest. In conclusion, preventing the growth of E. repens during the early part of the post-harvest autumn period was more important than starving rhizomes with repeated cultivations. Weed Research
Two potential control methods for Elymus repens, which do not disturb the soil, are post-harvest mowing and competition from under-sown cover crops. Our aim was to quantify the effect of cover crop competition and mowing on E. repens and to evaluate the potential for combining the two methods. We present a two-factorial split-plot experiment conducted at three locations in Sweden, in two experimental rounds conducted in 2011-2012 and 2012-2013. A spring cereal crop was under-sown with perennial ryegrass, red clover or a mixture of the two (subplots). Under-sown crops were either not mowed, or mowed once or twice post-harvest (main plots). This was followed by ploughing and a new spring cereal crop the next year. Mowing twice reduced autumn shoot biomass by up to 66% for E. repens and 50% for cover crops compared with the control, twice as much as mowing once. Pure ryegrass and mixture treatments reduced E. repens shoot biomass by up to 40% compared with the control. Mowing twice reduced rhizome biomass in the subsequent year by 35% compared with the control, while the pure red clover treatment increased it by 20-30%. Mowing twice and treatments including red clover resulted in higher subsequent grain yields. We concluded that repeated mowing has the potential to control E. repens, but a low-yielding cover crop has insufficient effect on rhizome biomass. Clover-grass mixtures are of interest as cover crops, because they have the potential to increase subsequent crop yield and even at low levels they reduce E. repens above-ground autumn growth.
Many herbaceous perennial plant species gain significant competitive advantages from their underground creeping storage and proliferation organs (CR), making them more likely to become successful weeds or invasive plants. To develop efficient control methods against such invasive or weedy creeping perennial plants, it is necessary to identify when the dry weight minimum of their CR (CR DWmin) occurs. Moreover, it is of interest to determine how the timing of CR DWmin differs in species with different light requirements at different light levels. The CR DWmin of Aegopodium podagraria, Elymus repens and Sonchus arvensis were studied in climate chambers under two light levels (100 and 250 ?mol m?2 s?1), and Reynoutria japonica, R. sachaliensis and R. ? bohemica under one light level (250 ?mol m?2 s?1). Under 250 ?mol m?2 s?1, the CR DWmin occurred before one fully developed leaf in R. sachaliensis, around 1?2 leaves in A. podagraria and E. repens and around four leaves in S. arvensis, R. japonica and R. ? bohemica. In addition to reducing growth in all species, less light resulted in a higher shoot mass fraction in E. repens and S. arvensis, but not A. podagraria; and it delayed the CR DWmin in E. repens, but not S. arvensis. Only 65% of planted A. podagragra rhizomes produced shoots. Beyond the CR DWmin, Reynoutria spp. reinvested in their old CR, while the other species primarily produced new CR. We conclude that A. podagraria, R. sachaliensis and E. repens are vulnerable to control efforts at an earlier developmental stage than S. arvensis, R. japonica and R. bohemica.
Weed control within crop rows is one of the main problems in organic farming. For centuries, different weed removal tools have been used to reduce weeds in the crop rows. Stimulated by the demand from organic farmers, research in several European countries over the last decade has focused on mechanisation using harrowing, torsion finger weeding and weeding with compressed air (Pneumat). Intelligent weeders are now being developed which offer more advanced ways to control weeds, including larger ones and to leave the crop plants unharmed. One of the first commercially available intelligent weeders, the Sarl Radis from France, has a simple crop detection system based on light interception, which guides a hoe in and out of the crop row, around the crop plants. The inclusion of innovative technologies, including advanced sensing and robotics, in combination with new cropping systems, might lead to a breakthrough in physical weed control in row crops leading to significant reductions, or even elimination, of the need for hand weeding. © 2008 The Authors.