Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Chang, Shan-Shan
    et al.
    Salmen, Lennart
    RISE, Innventia.
    Olsson, Anne-Mari
    RISE, Innventia.
    Clair, Bruno
    Deposition and organisation of cell wall polymers during maturation of poplar tension wood by FTIR microspectroscopy2014In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 239, no 1, p. 243-254Article in journal (Refereed)
  • 2. Chang, S.-S.
    et al.
    Salmen, L.
    RISE, Innventia.
    Olsson, A.-M.
    RISE, Innventia.
    Clair, B.
    Deposition and organisation of cell wall polymers during maturation of poplar tension wood by FTIR microspectroscopy2014In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 239, no 1, p. 243-254Article in journal (Refereed)
  • 3.
    Olsson, A.-M.
    et al.
    RISE, Innventia.
    Bjurhager, I.
    RISE, Innventia.
    Gerber, L.
    Sundberg, B.
    Salmen, L.
    RISE, Innventia.
    Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy2011In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, no 6, p. 1277-1286Article in journal (Refereed)
  • 4.
    Peng, Hui
    et al.
    Research Institute of Wood Industry of Chinese Academy of Forestry, China.
    Salmen, Lennart
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Stevanic Srndovic, Jasna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Lu, Jianxiong
    Research Institute of Wood Industry of Chinese Academy of Forestry, China.
    Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy2019In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 250, no 1, p. 163-171Article in journal (Refereed)
    Abstract [en]

    Glucomannan was more strongly oriented, in line with the orientation of cellulose, than the xylan in both compression wood and normal wood of Chinese fir. Lignin in compression wood was somewhat more oriented in the direction of the cellulose microfibrils than in normal wood.

    The structural organization in compression wood (CW) is quite different from that in normal wood (NW). To shed more light on the structural organization of the polymers in plant cell walls, Fourier Transform Infrared (FTIR) microscopy in transmission mode has been used to compare the S2-dominated mean orientation of wood polymers in CW with that in NW from Chinese fir (Cunninghamia lanceolata). Polarized FTIR measurements revealed that in both CW and NW samples, glucomannan and xylan showed a parallel orientation with respect to the cellulose microfibrils. In both wood samples, the glucomannan showed a much greater degree of orientation than the xylan, indicating that the glucomannan has established a stronger interaction with cellulose than xylan. For the lignin, the absorption peak also indicated an orientation along the direction of the cellulose microfibrils, but this orientation was more pronounced in CW than in NW, indicating that the lignin is affected by the orientation of the cellulose microfibrils more strongly in CW than it is in NW.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7