Purpose. To investigate the response of the CC13 ionization chamber under non-reference photon beam conditions, focusing on penumbra and build-up regions of static fields and on dynamic intensity-modulated beams. Methods. Measurements were performed in 6 MV 100 × 100, 20 × 100, and 20 × 20 mm2 static fields. Monte Carlo calculations were performed for the static fields and for 6 and 15 MV dynamic beam sequences using a Varian multi-leaf collimator. The chamber was modelled using EGSnrc egs_chamber software. Conversion factors were calculated by relating the absorbed dose to air in the chamber air cavity to the absorbed dose to water. Correction and point-dose correction factors were calculated to quantify the conversion factor variations. Results. The correction factors for positions on the beam central axis and at the penumbra centre were 0.98-1.02 for all static fields and depths investigated. The largest corrections were obtained for chamber positions beyond penumbra centre in the off-axis direction. Point-dose correction factors were 0.54-0.71 at 100 mm depth and their magnitude increased with decreasing field size and measurement depth. Factors of 0.99-1.03 were obtained inside and near the integrated penumbra of the dynamic field at 100 mm depth, and of 0.92-0.94 beyond the integrated penumbra centre. The variations in the ionization chamber response across the integrated dynamic penumbra qualitatively followed the behaviour across penumbra of static fields. Conclusions. Without corrections, the CC13 chamber was of limited usefulness for profile measurements in 20-mm-wide fields. However, measurements in dynamic small irregular beam openings resembling the conditions of pre-treatment patient quality assurance were feasible. Uncorrected ionization chamber response could be applied for dose verification at 100 mm depth inside and close to large gradients of dynamically accumulating high- and low-dose regions assuming 3% tolerance between measured and calculated doses. © 2023 The Author(s).
In this work, we present a quantitative (statistical) 3D morphological characterization of optical fibers used in electric-field sensing. The characterization technique employs propagation-based x-ray phase-contrast microcomputed tomography (micro-CT). In particular, we investigate specialty optical fibers that contain microstructured holes that are electro-optically modified by thermal poling to induce second-order nonlinear effects (SONE). The efficiency of the SONE is reflected in the characterization parameter, Vπ, which is highly dependent on the dimensions of the fiber. The fiber microstructures must be uniform to support the fabrication of reproducible devices. The results obtained using the micro-CT technique show that uncertainty of ±1.7% arises in the determination of the expected value of the voltage that causes a change in the phase of the electromagnetic wave equal to π rad (Vπ ), demonstrating a great advantage, compared with other techniques e.g. SEM, which would need at least 1000 images of the cross-section of an optical fiber, taken at different points, making the process more expensive and time-consuming.
When subjecting cast irons to mechanical loading the deformation and damage mechanisms occur on a microstructural level and are dependent on the inherent microstructure. A deeper understanding of the relation between the different microstructural constituents and the macroscopic mechanical behaviour would be beneficial in material development efforts and for the ability to design and cast components with tailored properties. Traditionally, microscopy examinations on sectioned cast iron samples have been used when analysing the microstructure in cast irons. Since all microstructural heterogeneity is in three-dimensions (3D), methods that provide a three-dimensional characterisation are essential for a deeper understanding of, both the microstructural features as well as the deformation and damage of cast irons. Therefore, different cast iron grades have been studied using synchrotron X-ray tomography and 3D x-ray diffraction (3DXRD) at ESRF in Grenoble, France. The samples were stepwise loaded and unloaded in-situ at in the tomography/3DXRD set-up to study the deformation with regard to microstructural constituents and the microstructural evolution in 3D. Based on the 3D tomography image sequences, digital volume correlation (DVC) was used for full strain field analysis and for the analysis of damage and deformation mechanisms. In addition, 3DXRD data were analysed to provide details on the lattice parameters and lattice strain of individual ferrite grains. This work shows the possibilities of such synchrotron experiments for advanced study of the mechanical behaviour of cast iron.