Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Broberg, Kristina
    et al.
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Lindahl, Lina
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Tamm, Daniel
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Potentialstudie för biogassubstrat i Västra Götaland, Halland och Skåne2022Report (Other academic)
    Abstract [en]

    The potential of producing biogas by digestion from substrates in Västra Götaland, Halland and Skåne has in this study been estimated to approximately 5 900 GWh per year, of which 2 300 GWh are found in Västra Götaland, 650 GWh in Halland and 3 000 GWh in Skåne. The estimated potential is based on the current amounts of the substrate categories food waste, agricultural residues, manure, sludge from sewage treatment plants and industrial organic residues. For each of the three regions, the largest contributor to the current substrate potential is agricultural residues. This category contributes with approximately 3 900 GWh annually in total for the three regions. However, to be able to fully realize the potential of the agricultural residues there are logistic and technical challenges to be solved. Manure accounts for the second largest contribution to the potential, approximately 1 000 GWh per year for the three regions. The conditions to realize the manure potential are good with national production support in place for this substrate category.

    The study also includes a brief investigation of future substrate categories focused on marine substrates, grass and hay harvesting, industrial wastewater and biological methanation. From the future substrates, a contribution of a total of 3 600 GWh per year will be added to the estimated potential for the three regions. The largest addition is potential biological methanation of the carbon dioxide streams from the total substrate potential from the current categories, approximately 3 000 GWh annually. Thereafter, the largest contributing future substrate category is industrial wastewater. Including the future substrate flows, a total biogas potential of 9 500 GWh per year was estimated for Västra Götaland, Skåne and Halland together. To realize the potential, close cooperation between substrate owners, gas producers and municipalities are needed together as well as a long-term policy landscape.

    Download full text (pdf)
    fulltext
  • 2.
    Pawar, Sudhanshu S.
    et al.
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Werker, Alan
    Promiko AB, Sweden.
    Bengtsson, Simon
    Promiko AB, Sweden.
    Sandberg, Maria
    Karlstad University, Sweden.
    Langeland, Markus
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food. SLU Swedish University of Agricultural Sciences, Sweden.
    Persson, Magnus
    Paper Province AB, Sweden.
    Willquist, Karin
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources. Fortum Recycling and Waste AB, Sweden.
    MultiBio: Environmental services from a multipurpose biorefinery2020Report (Other academic)
    Abstract [en]

    MultiBio project aimed to establish and demonstrate a novel multipurpose biorefinery cascade concept, producing three renewable biobased products: 1) biohydrogen, 2) biopolymers and 3) protein rich meal ingredients for fish farming. The cascade concept exploits the ability of a bacterium (Caldicellulosiruptor saccharolyticus) to transform nutrients present in low-value waste process waters of the pulp and paper industry, to high-value products hydrogen gas, organic acids and microbial biomass. The organic acid rich effluent will then be managed in an open culture microbial process used to achieve discharge water quality objectives and to produce polyhydroxyalkanoate (PHA) biopolymers. Moreover, since C. saccharolyticus protein content is more than 63% of cell dry weight, their potential in formulation of fish feed was evaluated. 

    A fiber sludge containing, CTMP residual stream was found to be a possible feedstock for the MultiBio process concept. Due to safety risks the demo-scale experiments of biohydrogen gas technology were moved from Biorefinery demo plant (Örnsköldsvik) of 40 m3 capacity to ATEX classified pilot-scale facility with 0.4 m3 capacity. Hence, bacterial biomass enough for the large-scale fish feed ingredient could not be produced. Lab-scale experiments with Caldicellulosiruptor cells as fish feed ingredient showed promising results as a protein-rich, sustainable fish feed ingredient. In addition, PHA biopolymer also showed favourable results as fish food ingredient for experiments at Gårdsfisk AB. Lab-scale experimental tests showed that the surplus activated sludge from the mills wastewater treatment could currently accumulate PHA to about 20 % of its dry weight. Mass balance evaluations based on realistically achievable expectations indicated a PHA biopolymer production potential of 3 600 tons of PHA per year from available organic residuals and for the two evaluated mills combined. 

    The MultiBio concept has a positive climate impact in comparison with current treatment and moves developments in a positive direction to achieve 7 of the 10 Swedish environmental goals. Through a detailed feasibility analysis, a natural progression in next steps in scenarios were suggested for PHA production. The MultiBio cascade process can be implemented with further necessary development with good business potential and a positive effect on climate change. However, biohydrogen technology needs further developments before this cascade process concept can be implemented. Alternatively, a scenario with only biopolymer technology shows already a significant business potential and even larger positive effect on climate change. A successful next step in demonstration of the PHA biopolymer production scenario may lead to it being implemented within the next few years. Furthermore, MultiBio has attracted a lot of attention regionally and nationally but also internationally with a total of 65 media listings. A licentiate thesis and three university degree projects linked to the project have been completed. Overall, the MultiBio project has successfully achieved its goals and objectives.

    Download full text (pdf)
    fulltext
  • 3.
    Røyne, Frida
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Built Environment, Energy and Circular Economy.
    Brunklaus, Birgit
    RISE - Research Institutes of Sweden (2017-2019), Built Environment, Energy and Circular Economy.
    Rex, Emma
    RISE - Research Institutes of Sweden (2017-2019), Built Environment, Energy and Circular Economy.
    Torén, Johan
    RISE - Research Institutes of Sweden (2017-2019), Built Environment, Energy and Circular Economy. RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation.
    Cintas, Olivia
    RISE - Research Institutes of Sweden (2017-2019), Built Environment, Energy and Circular Economy.
    Assessment Roadmapfor Emerging Bio-based Technologies: Identifying Sustainability Prospects with Multiple Perspectives2019In: Life cycle Management Conference 2019: Life cycle Management Conference 2019, Poznan, Polen, 2019, Vol. 9Conference paper (Other academic)
    Abstract [en]

    Many bio-based technologies are emerging technologies, with the characteristics of being radical and fast growing. The 2018 Nobel prize in chemistry is based on enzymatic bio-based conversion as a green alterative for several conventional technologies. Overall, the transition to a bio-based economy is seen as a mean to reach sustainability, energy independence and economic growth. Bioeconomy strategies have however also been criticized for focusing too much on economic growth and too little on sustainability. Assessing potential life cycle sustainability risks and benefits early in the development of technologies – when still at lab or pilot scale – provides valuable insights about how to prioritize research activities and to potentially avert unintended consequences. The lack of knowledge and high uncertainty in early development however also makes such assessments challenging. On the social sustainability side, bio-based technologies create new jobs, while the social acceptance can hinder the market growth even in an innovation country like Sweden. Emerging technologies like for example artificial intelligence might reduce jobs and gene therapy in medicine might bear risk for coming future generation. The questions and risks are manifold. Therefore, it is essential to have a roadmap for guidance that takes a holistic approach to sustainability with a life cycle perspective. To add to the complexity, the possibilities for assessment approaches are extensive. Different perspectives can be assessed in numerous ways and with many different methods. The goal of this study is to contribute to a sustainable transition to the bioeconomy, by serving as a roadmap for research and innovation (R&I) on emerging bio-based technologies.

    To suggest a general roadmap for holistic and interdisciplinary assessments, this study identifies, and describes the use of multiple perspective assessments in selected R&I projects on emerging bio-based technologies. The projects include virgin and waste raw materials, biotechnology conversion processes and products such as bio-based chemicals, building materials, soil amendment, and pellets for heat. The findings are, in combination with existing frameworks on biomass- and bio-product prospect models, used to suggest an assessment roadmap for identifying sustainability prospects of emerging bio-based technologies.

    The result consists of an “assessment roadmap” including the perspectives resource-, economic-, environmental-, social- and market potential. Each perspective is accompanied by questions targeted to identify benefits and risks, such as “What valorization routes currently exists, and are under research, for the feedstock?”; “Is the feedstock available, also in the future?”; “Is the production technology socially accepted?”. The roadmap for bio -based emerging technologies also provides advice on the procedure for sustainability assessments, such as organizing an initial workshop with expert knowledge and highlight the importance of scanning before allocating resources for in depth analyses.

    Download full text (pdf)
    fulltext
  • 4.
    Uhlin, Anders
    et al.
    RISE, Innventia.
    Danielsson, Sverker
    RISE, Innventia.
    Johansson, Therese
    Sivert, Åsa
    Membrane filtration of pulp mill effluents2014Conference paper (Refereed)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf