Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bok, Gunilla
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Brander, Linus
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Johansson, Pernilla
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Nya möjligheter att minska mängden deponerat gipsavfall från bygg- och ombyggnadsprojekt2018Report (Other academic)
    Abstract [en]

    Plasterboard is a common building material used in several parts of a building. In the case of retrofitting and demolition a part of the waste consists of components combined with the plasterboards, for example, frame work timber.

    In the case of new construction and retrofitting, construction waste is produced from clean plasterboard boards, either as cut off pieces or as unused whole boards. This waste can be used as raw material to produce new plasterboards. Manufacturers want to use gypsum from wasted boards to decrease the use of primary gypsum from mining and the quality requirements are relatively easy to achieve.

    In this project it has been found that the major construction companies already handle gypsum from new construction separately. This waste fraction could already be used in the production of new boards. Gypsum from retrofitting is usually assembled with other building materials and require more extensive efforts to achieve necessary purity to be used in the productions of new boards. Today, plasterboard waste is deposited or used to improve soil and/or sludge. In order to increase the recycling of plasterboards new inventory routines of rebuilding and demolition projects need to be elaborated. New tools and methods for dismantling plasterboard need to be development to achieve safe working environment and environmentally and economically sustainable recycling.

    Preparation plants producing raw material from plasterboard waste are already in operation. Today the waste mainly is wastage from the production stage. In order to increase the recycling of plasterboards from the construction- and demolition branch new logistic systems need to be developed, for example by creating collection points for gypsum board waste and / or developing new transport vehicles and systems. Prerequisites of changing the system of piece work in the construction industry need to be investigated with the intension to create a more sustainable building industry.

  • 2.
    Edwards, Ylva
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Hållbara byggnadsverk.
    Emilsson, T.
    Malmberg, J.
    Skog, A. P.
    Capener, C.-M.
    Quality-assured solutions for green roof gardens on concrete deck with zero tolerance for leaks2016In: The Sustainable City XI / [ed] A. Galiano-Garrigos, C.A. Brebbia, WIT Press, 2016Conference paper (Refereed)
    Abstract [en]

    Eco-neighborhoods with gardens on concrete decks are for several reasons increasingly being prescribed today in major Swedish cities. However, there is a lack of knowledge, experience, standards and guidelines as well as collaboration between parties and stakeholders when installing such systems. It is incredibly important to avoid any leakage during the lifetime of a green roof garden but this cannot be completely guaranteed with today’s installation practice and project management. At Sustainable City 2014 in Siena, we presented a paper about a new project aiming at bringing together researchers, government and industry to collaborative development of new and attractive solutions for green roof gardens with consideration to the environment and high requirements for durability, materials, construction and energy efficiency. This paper is a continuation of the paper presented in Siena and reports on the most recent results from the collaborative project which will finalize in November 2016. After that, the project will be further evaluated in a proposed continuation project for another couple of years.

  • 3.
    Sandin, Gustav
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Peters, Greg M.
    Chalmers University of Technology.
    Environmental impact of textile reuse and recycling – A review2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 184, p. 353-365Article, review/survey (Refereed)
    Abstract [en]

    This paper reviews studies of the environmental impact of textile reuse and recycling, to provide a summary of the current knowledge and point out areas for further research. Forty-one studies were reviewed, whereof 85% deal with recycling and 41% with reuse (27% cover both reuse and recycling). Fibre recycling is the most studied recycling type (57%), followed by polymer/oligomer recycling (37%), monomer recycling (29%), and fabric recycling (14%). Cotton (76%) and polyester (63%) are the most studied materials.

    The reviewed publications provide strong support for claims that textile reuse and recycling in general reduce environmental impact compared to incineration and landfilling, and that reuse is more beneficial than recycling. The studies do, however, expose scenarios under which reuse and recycling are not beneficial for certain environmental impacts. For example, as benefits mainly arise due to the avoided production of new products, benefits may not occur in cases with low replacement rates or if the avoided production processes are relatively clean. Also, for reuse, induced customer transport may cause environmental impact that exceeds the benefits of avoided production, unless the use phase is sufficiently extended.

    In terms of critical methodological assumptions, authors most often assume that textiles sent to recycling are wastes free of environmental burden, and that reused products and products made from recycled materials replace products made from virgin fibres. Examples of other content mapped in the review are: trends of publications over time, common aims and geographical scopes, commonly included and omitted impact categories, available sources of primary inventory data, knowledge gaps and future research needs. The latter include the need to study cascade systems, to explore the potential of combining various reuse and recycling routes.

  • 4.
    Stolen, Reidar
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stensaas, Reidar
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Solcelleteknologi og brannsikkerhet2018Report (Other academic)
    Abstract [en]

    The use of photovoltaic (PV) technology in Norway is increasing. In this study, fire safety challenges of PV technology are studied. Fire ignition, fire spread and fire extinguishing are investigated. The study forms a knowledge base for safeguarding fire safety during assembly, operation and during firefighting efforts, and to form unified and clear regulations. The results show:

    Fire ignition: PV installations contain many electric connections which can be potential ignition sources, as well as a small volume of combustible materials. These provide everything needed to initiate a fire. It is important that all connections in a PV installation are robust and can withstand the stress they are exposed to throughout their lifetime, without causing malfunction that could cause a fire.

    Fire spread: For building attached photovoltaics, there are cavities between the module and the building. If there is a fire in this cavity, the produced heat could be trapped, which could lead to a more rapid and extensive fire spread than if the building surface were uncovered. In large scale tests with PV modules mounted on a roof covering, the fire spread under the whole area covered with modules, but stopped when approaching the edge. This demonstrates the importance of sectioning when mounting PV installations, to avoid fire spread to the whole roof. An option is to use materials with limited combustibility as roof covering below the PV module, to withstand the increased heat exposure from the PV modules. The cavity between module and building could potentially also alter the air flow along the building, which in turn could affect the fire spread.

    Firefighting: Firefighters need information on whether there is a PV installation in the building, and where there are electrical components. During firefighting efforts, the fire service must consider the danger of direct contact, and danger of arcs and other faults that could lead to new ignition points. Fresh water can be used as an extinguishing agent. This must be applied from at least 1 meter distance with spread beam and at least 5 meters distance with a focused beam. PV modules can complicate fire extinguishing as they represent a physical barrier between the fire fighter and the area to extinguish, and by creating areas which should be avoided due to danger of components with voltage. When these points are considered, building attached photovoltaics should not be a problem.

    Further work: For building attached photovoltaics, there is little research on vertical mounting (on facades), and on how changed fire dynamics could affect fire spread and extinguishing. Also, today there is an increasing use of building integrated photovoltaics, which could potentially give many new challenges for fire safety and for regulations, as these are a part of the building and at the same time electrical components. German statistics indicate that there is an increased fire risk for these types of installations, compared to building attached photovoltaics, making this an important focus area for further work.

  • 5.
    Zackrisson, Mats
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Energi och miljö.
    Indikatorer för bedömning av miljöpåverkan2014Report (Other academic)
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4