Change search
Refine search result
12 1 - 50 of 51
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmadkhaniha, Donya
    et al.
    Jönköping University, Sweden.
    Leisner, Peter
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics. Jönköping University, Sweden.
    Zanella, Caterina
    Jönköping University, Sweden.
    Pinate, Santiago
    Jönköping University, Sweden.
    Electrodeposition of Ni high P composite coatings containing nano and submicron ceramic particles2017Conference paper (Refereed)
  • 2.
    Albinsson, Ola
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Lundevall, Åsa
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Sehati, Parisa
    Linköpings universitet.
    Stålhanske, Christina
    RISE.
    Sundberg, P
    Mattsson, Lards-Göran
    KTH Royal Institute of Technology .
    Sjövall, Peter
    Rise.
    The influence of surface composition and plasma treatment on adhesion2015In: Proceedings of GPD Glass Performance Days 2015, 2015, p. 11-14Conference paper (Other academic)
  • 3. Barbier, C.
    et al.
    Rättö, Peter
    RISE, Innventia.
    Hornatowska, Joanna
    RISE, Innventia.
    Coating models for an analysis of cracking behavior between folded paper and creased board2012Conference paper (Refereed)
  • 4.
    Belov, Ilia
    et al.
    Jönköping University.
    Zanella, Caterina
    Jönköping University.
    Edström, Curt
    Jönköping University.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping University.
    Simulation based investigation of silver platingprocess parameters and their effect on throwing power2015Conference paper (Refereed)
  • 5.
    Capanema, Ewellyn
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy.
    Balakshin, Mikhail
    BOKU, Austria.
    Application of Omno polymers in PF wood adhesives2017In: 19th International symposium on wood, fibre and pulping chemistry, August 28 - September 1, 2017, Porto Seguro, Brazil, 2017, p. 65-69Conference paper (Refereed)
    Abstract [en]

    The Plantrose® technology is a promising biorefinery method which enables the production of C5 and C6 sugars from different lignocellulosics using sub- and supercritical water in a two-step process. The lignin rich solids after carbohydrate hydrolysis containing various amounts of residual cellulose are trademarked as OmnoTM polymers. The reactivity and bonding performance of different Omno polymers in direct partial substitution of phenol-formaldehyde adhesive resins (PF) for the manufacture of oriented strand board (OSB) and softwood plywood were evaluated by a fast bench screening test using the Automatic Bond Evaluation System (ABES) and by pilot trials on the production and testing of wood panels. The results showed that about 1/3 of commercial glues could be successfully substituted by Omno polymers without any significant drop in the adhesive reactivity and properties of the resulting wood panels. Selected Omno polymers had superior performance as compared to high-purity pulping lignins (Kraft, soda and organosolv) due to a positive effect of the residual cellulose in the Omnopolymers on the adhesive performance. Hardwood lignins had no disadvantages as compared to various softwood lignins, in strict contrast to the current dogma.

  • 6. Charlène, Reverdy
    et al.
    Sedighi Moghaddam, Maziar
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Sundin, Mikael
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Superhydrophobic surfaces manufacturing with nanocellulose2016In: N.I.C.E. 2016, The 3rd International Conference on Bioinspired and Biobased Chemistry & Materials, Nice, France, October 16-19, 2016, 2016Conference paper (Refereed)
    Abstract [en]

    Researchers in natural fibers see opportunities in superhydrophobicity for fabrics or paper. The first challenge with natural fiber is their high hydrophilicity when the second is the perpetual search for water born coating  in papermaking. These challenges were overcome by a one pot formulation comprising a latex binder, precipitated calcium carbonate and  fatty acids to give their hydrophobicity to pigments 1.  In this study, we want to go further by replacing the petro-sourced latex with a new kind of fibers that are cellulose nanofibers (CNF).

    Inspired by the Lotus leaf, superhydrophobic surfaces have been a center of interest in the last decade because of their high potential in industry for a variety of applications.  It is seen as the next generation of surface for anti-fouling and corrosive retardant in navy industry but also  in general  anti corrosive materials industry.  Now widely studied , mechanisms for manufacturing superhydrophobicity are well understood. Born from the alliance of low surface energy chemistry and physical structuration of surface, superhydrophobic materials give a water contact angle above 150° and a slidding angle below 10°.

  • 7.
    Ejenstam, Lina
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Polymer och fiber.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Claesson, Per M.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. Department of Chemistry Surface and Corrosion Science, KTH Royal Institute of Technology.
    Toward superhydrophobic polydimethylsiloxane−silica particle coatings2016In: Journal of Dispersion Science and Technology, ISSN 0193-2691, E-ISSN 1532-2351, Vol. 37, no 9, p. 1375-1383Article in journal (Refereed)
    Abstract [en]

    Hydrophobized silica nanoparticles of different sizes, from 16 to 500 nm, were used to impart roughness to a hydrophobic polydimethylsiloxane (PDMS) coating with the aim of obtaining superhydrophobic properties. The particle silanization process and the curing process of the PDMS coating were optimized to increase the contact angle (CA) of the particle containing coating. The evaluation of the coatings, by means of water CA measurements and scanning electron microscopy imaging, shows that superhydrophobicity in the adhesive rose state was achieved using combinations of two differently sized particles, with an excess of the small 16 nm ones. Superhydrophobicity in the lotus state was obtained when the filler concentration of 16 nm particles was 40 wt%, but under such conditions the coating was found to partially crack, which is detrimental in barrier applications. The preference for the rose wetting state can be explained by the round shape of the particles, which promotes the superhydrophobic rose wetting state over that of the superhydrophobic lotus state.

  • 8.
    Ejenstam, Lina
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Polymer och fiber. KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science.
    Pan, J.
    Claesson, Per M.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. Department of Chemistry Surface and Corrosion Science, KTH Royal Institute of Technology.
    Corrosion protection by hydrophobic silica particle-polydimethylsiloxane composite coatings2015In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 99, p. 89-97Article in journal (Refereed)
    Abstract [en]

    In this study, the time-dependent corrosion protection ability of 10-15. μm thin polydimethylsiloxane-nanoparticle composite coatings was evaluated using mainly open circuit potential and electrochemical impedance spectroscopy measurements. The best result was obtained for the coating containing 20. wt% hydrophobic silica nanoparticles, where it was possible to achieve protection for almost 80 days in 3. wt% NaCl solution. The protective properties offered by this coating are suggested to be due to a synergistic effect of the hydrophobicity of the polydimethylsiloxane matrix and the prolonged diffusion path caused by addition of hydrophobic silica particles.

  • 9.
    Ejenstam, Lina
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Polymer och fiber. KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science.
    Tuominen, Mikko
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Haapanen, J.
    Mäkelä, J. M.
    Pan, J.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. KTH Royal Institute of Technology, Division of Surface and Corrosion Science.
    Claesson, Per M.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. Department of Chemistry Surface and Corrosion Science, KTH Royal Institute of Technology.
    Long-term corrosion protection by a thin nano-composite coating2015In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 357, no Part B, p. 2333-2342Article in journal (Refereed)
    Abstract [en]

    We report and discuss the corrosion protective properties of a thin nano-composite coating system consisting of an 11μm thick polyester acrylate (PEA) basecoat, covered by an approximately 1-2μm thick layer of TiO2 nanoparticles carrying a 0.05μm thick hexamethyl disiloxane (HMDSO) top coat. The corrosion protective properties were evaluated on carbon steel substrates immersed in 3wt% NaCl solution by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements. The protective properties of each layer, and of each pair of layers, were also evaluated to gain further understanding of the long-term protective properties offered by the nano-composite coating. The full coating system showed excellent corrosion protective properties in the corrosive environment of 3wt% NaCl-solution for an extended period of 100 days, during which the coating impedance, at the lower frequency limit (0.01Hz), remained above 108 Ωcm2. We suggest that the excellent corrosion protective properties of the complete coating system is due to a combination of (i) good adhesion and stability of the PEA basecoat, (ii) the surface roughness and the elongated diffusion path provided by the addition of TiO2 nanoparticles, and (iii) the low surface energy provided by the HMDSO top coat.

  • 10.
    Ferraris, M.
    et al.
    Politecnico di Torino, Italy.
    Perero, S.
    Politecnico di Torino, Italy.
    Ferraris, S.
    Politecnico di Torino, Italy.
    Miola, M.
    Politecnico di Torino, Italy.
    Vernè, E.
    Politecnico di Torino, Italy.
    Skoglund, S.
    KTH Royal Institute of Technology, Sweden.
    Blomberg, Eva
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. KTH Royal Institute of Technology, Sweden.
    Odnevall Wallinder, I.
    KTH Royal Institute of Technology, Sweden.
    Antibacterial silver nanocluster/silica composite coatings on stainless steel2017In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 396, p. 1546-1555Article in journal (Refereed)
    Abstract [en]

    A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface compared with a control surface. The antibacterial coating retained its antibacterial activity after thermal treatment up to 450 °C and after soaking in common cleaning products for stainless steel surfaces used for e.g. food applications. The antibacterial capacity of the coating remained at high levels for 1-5 days, and showed a good capacity to reduce the adhesion of bacteria up to 30 days. Only a few percent of silver in the coating was released into acetic acid, even after 10 days of exposure at 40 °C. Most silver (> 90%) remained also in the coating even after 240 h of continuous exposure. Similar observations were made after repeated exposure at 100 °C. Very low levels of released silver in solution were observed in artificial milk. No release of silver nanoparticles was observed either in synthetic tap water or in artificial milk at given conditions. The coating further displayed good antibacterial properties also when tested during working conditions in a cheese production plant.

  • 11.
    Groth, Cecilia
    RISE - Research Institutes of Sweden, Swerea.
    ECOSUS - ekologiskt hållbara förbehandlingar för lackering av multimetall2017Conference paper (Other academic)
  • 12.
    Groth, Cecilia
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Förbehandling före pulverlackering2015Conference paper (Other academic)
  • 13. Heydari, G.
    et al.
    Sedighi Moghaddam, Maziar
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Tuominen, Mikko
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Fielden, M.
    Haapanen, J.
    Mäkelä, J. M.
    Claesson, Per M.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. Department of Chemistry Surface and Corrosion Science, KTH Royal Institute of Technology.
    Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces2016In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 468, p. 21-33Article in journal (Refereed)
    Abstract [en]

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7 °C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4 °C and -7 °C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost formation to occur.

  • 14.
    Johansson, Kenth S.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
    20 - Surface Modification of Plastics2017In: Applied Plastics Engineering Handbook (Second Edition): Processing, Materials, and Applications / [ed] Kutz, Myer, Elsevier, 2017, p. 443-487Chapter in book (Other academic)
    Abstract [en]

    Abstract This chapter gives an overview of different methods for improving surface properties of plastics. Plastics are inherently hydrophobic, low surface energy materials and thus do not adhere well to other materials. Adhesion improvement is the most common application but other surface characteristics, such as wettability, water- and chemical resistance, nonfouling, tribological behavior, oxygen, and moisture transmission are also addressed. It has been estimated that 70% of the total production of plastic materials must be surface treated prior to processing. The methods range from vacuum to atmospheric pressure, wet to dry, simple to sophisticated, and inexpensive to very costly to obtain the required functional characteristics of plastics. Most methods used today are dry and environmentally sound. The methods presented are roughly divided in surface activation (e.g., plasma, corona, flame, and UV laser) and surface coating (e.g., plasma polymerization, chemical vapor deposition, Parylene, physical vapor deposition) techniques.

  • 15. Koivula, H.
    et al.
    Kamal Alm, H.
    RISE, Innventia.
    Toivakka, M.
    Temperature and moisture effects on wetting of calcite surfaces by offset ink constituents2011In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, no 3, p. 105-111Article in journal (Refereed)
  • 16.
    Leisner, Peter
    RISE - Research Institutes of Sweden.
    About the effect of anodic pulses and periodiccurrent reversion on electrodeposits2012Conference paper (Refereed)
  • 17.
    Leisner, Peter
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics.
    Aspectsto be considered when making innovation out of promising research results insurface technology2018Conference paper (Other academic)
  • 18.
    Leisner, Peter
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics. Jönköping University, Sweden.
    EAST Prizes for excellence in surface technology2017In: Transactions of the IMF / The international journal of surface engineering and coatings, Vol. 95, no 4, p. 183-184Article in journal (Other (popular science, discussion, etc.))
  • 19.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping university.
    Electrolytic methods for manufacturing of miniaturized structures2015Conference paper (Other academic)
  • 20.
    Leisner, Peter
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics. Jönköping University.
    Examination of coatings and interfaces by CTX-ray2016Conference paper (Other academic)
  • 21.
    Leisner, Peter
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics.
    Hansen, Åsa
    Jönköping University, Sweden.
    Zanella, Caterina
    Jönköping University, Sweden.
    Applicationof Assaf panel for evaluating the throwing power of pulse reverse plating2018Conference paper (Other academic)
  • 22.
    Leisner, Peter
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics. Jönköping University.
    Zanella, Caterina
    Jönköping University.
    Introduction to pulse plating2016Conference paper (Refereed)
  • 23.
    Leisner, Peter
    et al.
    RISE - Research Institutes of Sweden. Jönköping University.
    Zanella, Caterina
    Jönköping University.
    Structure modificationand process control by pulsed electrodeposition2015Conference paper (Refereed)
  • 24.
    Leisner, Peter
    et al.
    RISE - Research Institutes of Sweden. Jönköping University.
    Zanella, Caterina
    Jönköping University.
    Belov, Ilia
    Jönköping University.
    Edström, Curt
    RISE - Research Institutes of Sweden.
    Sandulache, Gabriela
    Happy Plating .
    Influence of pulse reverse plating parameters onthrowing power in a silver cyanide bath2016Conference paper (Other academic)
  • 25. Li, H.
    et al.
    Somers, A. E.
    Rutland, Mark W.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Life Science. KTH Royal Institute of Technology, Sweden.
    Howlett, P. C.
    Atkin, R.
    Combined nano- and macrotribology studies of titania lubrication using the oil-ionic liquid mixtures2016In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 4, no 9, p. 5005-5012Article in journal (Refereed)
    Abstract [en]

    The lubrication of titania surfaces using a series of ionic liquid (IL)-hexadecane mixtures has been probed using nanoscale atomic force microscopy (AFM) and macroscale ball-on-disk tribometer measurements. The IL investigated is trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate, which is miscible with hexadecane in all proportions. At both length scales, the pure IL is a much more effective lubricant than pure hexadecane. At low loads, which are comparable to common industrial applications, the pure IL reduces the friction by 80% compared to pure hexadecane; while the IL-hexadecane mixtures lubricate the titania surface as effectively as the pure IL and wear decreases with increasing IL concentration. At high test loads the adsorbed ion boundary layer is displaced leading to surface contact and high friction, and wear is pronounced for all IL concentrations. Nonetheless, the IL performs better than a traditional zinc-dialkyl-dithophosphate (ZDDP) antiwear additive at the same concentration.

  • 26. Li, J.
    et al.
    Ecco, L.
    Ahniyaz, Anwar
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Fedel, Michele
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Pan, J.
    In situ AFM and electrochemical study of a waterborne acrylic composite coating with CeO2 nanoparticles for corrosion protection of carbon steel2015In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 162, no 10, p. C610-C618Article in journal (Refereed)
    Abstract [en]

    The corrosion protection of a waterborne acrylic composite coating with 1 wt% ceria nanoparticles (CeNP) coated on carbon steel in 3 wt% NaCl solution was investigated by ex-situ and in situ as well as electrochemical atomic force microscopy (AFM) observations, combined with open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements. The synthesized CeNP were stabilized by acetic acid. The transmission electron microscopy characterization showed fine nano-size of as-synthesized CeNP, the ex-situ AFM imaging revealed uniform dispersion of the CeNP in the composite coating and greatly reduced nano-sized pinholes in the coating. The in situ and electrochemical (EC) AFM investigations indicate release of some CeNP and aggregates from the coating surface and then precipitation of some particles and cerium-compounds during the exposure. The OCP and EIS results demonstrated that the addition of 1 wt% CeNP leads to a significantly improved long term barrier type corrosion protection of the waterborne acrylic composite coating for carbon steel in 3 wt% NaCl solution. The beneficial effect of the CeNP is attributed to the blocking of nano-sized defects and inhibition by the cerium compounds originated from the acetic acid stabilized CeNP.

  • 27. Lindahl, C.
    et al.
    Xia, W.
    Engqvist, H.
    Snis, A.
    Lausmaa, Jukka
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Medicinteknik. BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden.
    Palmquist, A.
    Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants2015In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 353, p. 40-47Article in journal (Refereed)
    Abstract [en]

    The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca2+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300-500 nm. Cross-section imaging showed a thickness of 300-500 nm. In addition, dissolution tests in Tris-HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  • 28.
    Luksepp, Tomas
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Norman, L
    Ingemarsson, Lars-Olof
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Wanderbäck, Fredrik
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Bonding CFRP to steel and thermal issues at elevated temperatures: Joining in Car Body Engineering2014Conference paper (Other academic)
  • 29.
    Magagnin, Luca
    et al.
    Politechnico de Milano, Italy.
    Leisner, Peter
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics. Jönköping University, Sweden.
    Professor Pietro Luigi Cavallotti: 11 November 1938 – 12 October 20172018In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 96, no 1, p. 7-Article in journal (Other (popular science, discussion, etc.))
  • 30.
    Moghaddam, Maziar Sedighi
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. KTH Royal Institute of Technology, Sweden.
    Heydari, G.
    Tuominen, Mikko
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Fielden, M.
    Haapanen, J.
    Mäkelä, J. M.
    Wålinder, M. E. P.
    Claesson, Per M.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. KTH Royal Institute of Technology, Sweden.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: Dynamic wetting properties2016In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 70, no 6, p. 527-537Article in journal (Refereed)
    Abstract [en]

    The hydrophilic nature of wood surfaces is a major cause for water uptake and subsequent biological degradation and dimensional changes. In the present paper, a thin transparent superhydrophobic layer on pine veneer surfaces has been created for controlling surface wettability and water repellency. This effect was achieved by means of the liquid flame spray (LFS) technique, in the course of which the nanoparticulate titanium dioxide (TiO2) was brought to the surface, followed by plasma polymerisation. Plasma polymerised perfluorohexane (PFH) or hexamethyldisiloxane (HMDSO) were then deposited onto the LFS-treated wood surfaces. The same treatment systems were applied to silicon wafers so as to have well-defined reference surfaces. The dynamic wettability was studied by the multicycle Wilhelmy plate (mWP) method, resulting in advancing and receding contact angles as well as sorption behavior of the samples during repeated wetting cycles in water. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were employed to characterise the topography and surface chemical compositions and to elucidate the question how the morphology of the nanoparticles and plasma affect the wetting behavior. A multi-scale roughness (micro-nano roughness) was found and this enhanced the forced wetting durability via a superhydrophobic effect on the surface, which was stable even after repeated wetting cycles. The hydrophobic effect of this approach was higher compared to that of plasma modified surfaces with their micro-scale modification.

  • 31.
    Odeberg Glasenapp, Astrid
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Sundin, Maria
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Nordlinder, Johanna
    Swedish patent- and registration office, Sweden.
    Berthold, Jesper
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Alfthan, Johan
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Water-free bonding of corrugated board2018In: Packaging: Driving a sustainable future / [ed] Wang S-W, 2018, p. 608-616Conference paper (Refereed)
    Abstract [en]

    The "water-free bonding of corrugated board" concept focuses on thedevelopment, waste management and market potential of a new corrugated board production method. It has earlier been shown that by integrating PLA into paper, certain mechanical properties of corrugated board papers can be enhanced. These enhanced papers have been used for producing corrugated board. Corrugated board is usually produced by gluing the corrugated board paper layers with a starch suspension. This process is reducing the mechanical paper strength and is also energy consuming, as the water added by the starch suspension in the process has to be evaporated. In this study, two new water-free joining techniques for corrugated board have been investigated: PLA-welding, which melts the inherent PLA of the paper to create a bond and using PLA as an adhesive. Both techniques have shown promising results and are recommended for further investigation, however, replacing starch glue with PLA seems to be a solution closer to the market. For the material to fit in a future circular economy it is important that the waste is managed in a way that is sustainable for the environment and the society. Repulp ability testing in combination with literature studies indicate that the new material would be possible to recycle, and that the new material could function in every step described in the EU Waste Framework Directive.

  • 32.
    Oko, Asaf
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Polymer och fiber.
    Brandner, Birgit
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor.
    Claesson, Per
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Aggregation of inkjet ink components by Ca and Mg ions in relation to colorant pigment distribution in paper2014In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 456, no 1, p. 92-99Article in journal (Refereed)
  • 33.
    Oko, Asaf
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Medicinteknik.
    Claesson, Per M.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. Department of Chemistry Surface and Corrosion Science, KTH Royal Institute of Technology.
    Niga, Petru
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Life Science.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Measurements and dimensional scaling of spontaneous imbibition of inkjet droplets on paper2016In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, no 1, p. 156-169Article in journal (Refereed)
    Abstract [en]

    We investigate theoretically and experimentally the spontaneous imbibition of water based inkjet formulations utilizing paper capillary rise and imbibition of inkjet drops. We approximate the paper structure to a two dimensional anisotropic porous material, and using Darcy's law as a base, we derive dimensionless groups that scale drop imbibition. This derivation is based on a previous dimensional scaling of drop imbibition on thick isotropic porous material. We apply this scaling to a paper substrate by measuring the average drop imbibition rate, and perform paper capillary rise experiments to obtain the average system parameters required for the scaling. The results suggest that this approach is a valuable tool to predict drop imbibition rates on paper. We then continue and perform the same sets of experiments on a different paper with similar structure that is surface treated (surface sized) with CaCl2 salt, an additive that is known to improve print quality. We find that due to rapid aggregation of the colorant ink by the CaCl2, the imbibition rate is slowed down in the capillary rise experiments, i.e., on much larger scales compared to a single inkjet drop. However, the presence of CaCl2 has only minor effect over the average imbibition rates of single drops. Imbibition rates on the CaCl2 surface sized paper did not give adequate scaling as a result of the fact that the aggregation was not included the theoretical assumptions behind the scaling.

  • 34.
    Oko, Asaf
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Medicinteknik.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Infiltration and dimensional scaling of picoliter inkjet drops on nano- and microporous materials – isotropic porous glass and anisotropic paper2016In: Annual Surface and Materials Chemistry Symposium and Materials for tomorrow, ASMCS 2016, November 8-10, 2016, Gothenburg, Sweden, 2016Conference paper (Refereed)
  • 35. Ovaska, S. -S
    et al.
    Hiltunen, S.
    Ernstsson, Marie
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Schuster, E.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Food and Bioscience, Structure Design.
    Altskär, A.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Food and Bioscience, Structure Design.
    Backfolk, K.
    Characterization of rapeseed oil/coconut oil mixtures and their penetration into hydroxypropylated-starch-based barrier coatings containing an oleophilic mineral2016In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 101, p. 569-576Article in journal (Refereed)
  • 36.
    Pavlatou, E.
    et al.
    National Technical University of Athens.
    Chrysagis, K.
    Cert.
    Zoikis–Karathanasis, A.
    Cert.
    Rasmussen, Jan Boye
    Elplatek A/S.
    Rasmussen, Anette
    IPU.
    Leisner, Peter
    RISE - Research Institutes of Sweden.
    Zanella, Caterina
    Jönköping University.
    Gradewald, L.
    Kampakas, N.S.
    Kampakas.
    Panayiotakopoulos, G.
    SelfClean: NovelSelf-cleaning, anti-bacterial coatings, preventing disease transmission on everydaytouched surfaces2014Conference paper (Other academic)
  • 37.
    Pavlatou, E.A.
    et al.
    National Technical University of Athens.
    Tsoukleris, D.
    National Technical University of Athens.
    Spanou, S.
    National Technical University of Athens.
    Zanella, Caterina
    Jönköping University.
    Leisner, Peter
    RISE - Research Institutes of Sweden.
    Novel Self-cleaning,anti-bacterial Sn-Ni electrocoatings of high aesthetics and durability2014Conference paper (Refereed)
  • 38.
    Rättö, P.
    et al.
    RISE, Innventia.
    Hornatowska, J.
    RISE, Innventia.
    Barbier, C.
    Influence of the distribution of the shape and size distribution of pigment particles on cracking in coating layers during creasing2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, no 4, p. 714-720Article in journal (Refereed)
  • 39. Stepien, M.
    et al.
    Chinga-Carrasco, Gary
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Saarinen, J. J.
    Teisala, H.
    Tuominen, Mikko
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Haapanen, J.
    Kuusipalo, J.
    Mäkelä, J. M.
    Toivakka, M.
    Abrasion and compression resistance of liquid-flame-spray-deposited functional nanoparticle coatings on paper2014In: 13th TAPPI Advanced Coating Fundamentals Symposium 2014, TAPPI Press, 2014, p. 68-82Conference paper (Refereed)
    Abstract [en]

    • Liquid flame spray technology enables low-cost, large-scale nanoparticle deposition in roll-to-roll processes for controlling wettability and creating functional surfaces • SiO2 nanocoating has higher abrasion resistance than TiO2 coating, possibly due to better interparticle sintering • Wettability properties of the LFS nanoparticle coated paperboard are partially maintained after abrasion with a paper surface or compression through calendering • The changes in wettability are due to smoothening of the nanoparticle surface Changes in wettability properties during transport and in converting operations can be expected to be small • Challenges: - Nanoparticle release to air and safety aspects are unknown and difficult to quantify • Potential applications: - Printability control - Improved barrier and heat-sealing properties for extrusion coated board - Adhesion promotion in converting - Liquid absorption control in papermaking and converting operations - Functional surfaces, e.g., self-cleaning surfaces - Printed electronics applications - Microfluidics.

  • 40.
    Thorman, S.
    et al.
    RISE, Innventia.
    Ström, G.
    RISE, Innventia.
    Hagberg, A.
    RISE, Innventia.
    Johansson, P.A.
    Uniformity of liquid absorption by coatings: Technique and impact of coating composition2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, no 2, p. 459-465Article in journal (Refereed)
  • 41.
    Tsoukleris, D.S.
    et al.
    National Technical University of Athens.
    Spanou, S.
    National Technical University of Athens.
    Köhler, Susanne
    Elplatek A/S.
    Zanella, Caterina
    Jönköping University.
    Leisner, Peter
    RISE - Research Institutes of Sweden.
    Pavlatou, E.
    National Technical University of Athens.
    Study of tribological properties of nickel-basedcoatings reinforced by TiO2 nanoparticles produced by pulseelectrodeposition2014Conference paper (Refereed)
  • 42.
    Tuominen, Mikko
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Teisala, H.
    Haapanen, J.
    Aromaa, M.
    Mäkelä, J. M.
    Stepien, M.
    Saarinen, Jarkko J.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor. Åbo Akademi University, Åbo, Finland .
    Toivakka, M.
    Kuusipalo, J.
    Adjustable wetting of liquid flame spray (LFS) TiO2-nanoparticle coated board: Batch-type versus roll-to-roll stimulation methods2014In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 29, no 2, p. 271-279Article in journal (Refereed)
    Abstract [en]

    Superhydrophobic nanoparticle coating was created on the surface of board using liquid flame spray (LFS). The LFS coating was carried out continuously in ambient conditions without any additional hydrophobization steps. The contact angle of water (CAW) of ZrO2, Al2O3 and TiO2 coating was adjusted reversibly from >150° down to ~10-20° using different stimulation methods. From industrial point of view, the controlled surface wetting has been in focus for a long time because it defines the liquid-solid contact area, and furthermore can enhance the mechanical and chemical bonding on the interface between the liquid and the solid. The used stimulation methods included batch-type methods: artificial daylight illumination and heat treatment and roll-to-roll methods: corona, argon plasma, IR (infra red)- and UV (ultra violet)-treatments. On the contrary to batch-type methods, the adjustment and switching of wetting was done only in seconds or fraction of seconds using roll-to-roll stimulation methods. This is significant in the converting processes of board since they are usually continuous, high volume operations. In addition, the creation of microfluidic patterns on the surface of TiO2 coated board using simple photomasking and surface stimulation was demonstrated. This provides new advantages and possibilities, especially in the field of intelligent printing. Limited durability and poor repellency against low surface tension liquids are presently the main limitations of LFS coatings.

  • 43.
    Tuominen, Mikko
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Teisala, H.
    Haapanen, J.
    Mäkelä, J. M.
    Honkanen, M.
    Vippola, M.
    Bardage, S.
    Wålinder, M. E. P.
    Swerin, Agne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik. KTH Royal Institute of Technology, Sweden.
    Superamphiphobic overhang structured coating on a biobased material2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 389, p. 135-143Article in journal (Refereed)
    Abstract [en]

    A superamphiphobic coating on a biobased material shows extreme liquid repellency with static contact angles (CA) greater than 150° and roll-off angles less than 10° against water, ethylene glycol, diiodomethane and olive oil, and a CA for hexadecane greater than 130°. The coating consisting of titania nanoparticles deposited by liquid flame spray (LFS) and hydrophobized using plasma-polymerized perfluorohexane was applied to a birch hardwood. Scanning electron microscopy (SEM) imaging after sample preparation by UV laser ablation of coated areas revealed that capped structures were formed and this, together with the geometrically homogeneous wood structure, fulfilled the criteria for overhang structures to occur. The coating showed high hydrophobic durability by still being non-wetted after 500 000 water drop impacts, and this is discussed in relation to geometrical factors and wetting forces. The coating was semi-transparent with no significant coloration. A self-cleaning effect was demonstrated with both water and oil droplets. A self-cleanable, durable and highly transparent superamphiphobic coating based on a capped overhang structure has a great potential for commercial feasibility in a variety of applications, here exemplified for a biobased material.

  • 44.
    Zanella, Caterina
    et al.
    Jönköping University.
    Leimbach, Martin
    Jönköping University.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping University.
    Pulse reverse plating of SnNi2015Conference paper (Refereed)
  • 45.
    Zanella, Caterina
    et al.
    Jönköping university.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping University.
    A criticalreview on the use of pulse and pulse reverse plating and their influence onelectrodeposition of nanocomposite coatings2016Conference paper (Other academic)
  • 46.
    Zanella, Caterina
    et al.
    Jönköping University.
    Spanou, S.
    National Technical University of Athens.
    Pavlatou, E.A.
    National Technical University of Athens.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping University.
    Functional nanocomposite coatings based on SnNiand TiO22015Conference paper (Other academic)
  • 47.
    Zhu, Baiwei
    et al.
    Jönköping University.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping University.
    Persson, Per O.Å.
    Linköping University.
    Seifeddine, Salem
    Jönköping university.
    Jarfors, Anders E.W.
    Seifeddine.
    A study of formation and growth of the anodizedsurface layer on Al-Si casting alloys based on different analytical techniques2015Conference paper (Refereed)
  • 48.
    Zhu, Baiwei
    et al.
    Jönköping University.
    Seifeddine, Salem
    Jönköping University.
    Persson, Per O.Å.
    Linköping University.
    Jarfors, Anders E.W.
    Jönköping University.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping University.
    Zanella, Caterina
    Jönköping University.
    A study of formation and growth of the anodised surface layer on cast Al-Si alloys based on different analytical techniques2016In: Materials and Design, no 101, p. 254-262Article in journal (Refereed)
  • 49.
    Zhu, Baiwei
    et al.
    Jönköping University.
    Seifeddine, Salem
    Jönköping University.
    Persson, Per O.Å.
    Linköping University.
    Jarfors, Anders E.W.
    Jönköping University.
    Leisner, Peter
    RISE - Research Institutes of Sweden. Jönköping University.
    Zanella, Caterina
    Jönköping University.
    Effect of Si particle modification on the growthand microstructure of anodized aluminium oxide2016Conference paper (Refereed)
  • 50. Álvarez-Asencio, R.
    et al.
    Wallqvist, Viveca
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Kjellin, Mikael
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Life Science.
    Rutland, Mark W.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Life Science. KTH Royal Institute of Technology, Sweden.
    Camacho, A.
    Nordgren, Niklas
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Material och ytteknik.
    Luengo, G. S.
    Nanomechanical properties of human skin and introduction of a novel hair indenter2016In: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 54, p. 185-193Article in journal (Refereed)
    Abstract [en]

    The mechanical resistance of the stratum corneum, the outermost layer of skin, to deformation has been evaluated at different length scales using Atomic Force Microscopy. Nanomechanical surface mapping was first conducted using a sharp silicon tip and revealed that Young’s modulus of the stratum corneum varied over the surface with a mean value of about 0.4 GPa. Force indentation measurements showed permanent deformation of the skin surface only at high applied loads (above 4 μN). The latter effect was further demonstrated using nanomechanical imaging in which the obtained depth profiles clearly illustrate the effects of increased normal force on the elastic/plastic surface deformation. Force measurements utilizing the single hair fiber probe supported the nanoindentation results of the stratum corneum being highly elastic at the nanoscale, but revealed that the lateral scale of the deformation determines the effective elastic modulus.This result resolves the fact that the reported values in the literature vary greatly and will help to understand the biophysics of the interaction of razor cut hairs that curl back during growth and interact with the skin.

12 1 - 50 of 51
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.5