Change search
Refine search result
12 1 - 50 of 54
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Alberg, Ingmarie
    et al.
    Berntsson, Britt
    Andersson, Kjell
    Dannestam, Åse
    Persson Boonkaew, Frida
    (Larsson) Gulliksson, Daniel
    Fält, Jenny
    Good, Johanna
    Tiden, Sophie
    Nordin, Mats
    Claesson, Per
    Åhström, Mikael
    Edwards, Ylva
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Lyne, Åsa Laurell
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Kvalitetssäkrade systemlösningar för gröna anläggningar/tak på betongbjälklag med nolltolerans mot läckage: Rapport- Arbetsprocessen2017Report (Other academic)
  • 2.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Boström, Lars
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Jansson McNamee, Robert
    Brandskyddslaget, Sweden.
    Fire Safety of Façades2017Report (Other academic)
    Abstract [en]

    Façade fires do not occur often (in comparison to other major structure fires) but in recent years there have been a number of spectacular façade fires in high rise building such as the recent fire in Grenfell Tower, London.Under-ventilated compartment fires may cause flames to spill out of window openings impinging the façade, thus devastating façade fires may start on one floor leap-frogging to adjacent floors. It is therefore necessary to limit or delay fire spread to higher floors. Requirements built on large scale fire testing may decrease the risk of these types of fires provided that the building is constructed according to the specifications provided by the manufacturer. Different countries have different regulations and tests for façades. New materials and façade systems are continuously introduced which might call for an update of these tests and regulations.This report summarizes experimental and modelling efforts in characterizing the fire safety of façades using the Swedish SP Fire 105 and the British BS 8414 methods. Recent experimental results and modelling is presented exploring the variations in the fire exposure, fire load and the fuel used. The fire source and the heat exposure to the façade are characterized by additional temperatures measured by plate thermometers while some other aspects are only treated in the numerical study such as a change in fuel. It is found that the results from the BS 8414 are largely affected by wind and climate since the experimental test was performed outdoors, moreover fire spread on wooden façades is also briefly discussed.In order to obtain a deeper understanding of the test methods and the results CFD (Computational Fluid Dynamics) Modelling in FDS was used. The models were based on measured input parameters including uncertainties and an assessment of the impact of said uncertainties. The models could often reproduce the experimentally found temperatures qualitatively and quantitatively. A detailed discussion on the regulations and the tests that lead to the SP Fire 105 test method is also presented. Summaries of the façade testing methods and conditions in other European countries are presented in the appendices.Finally possible ways forward in updating the façade testing and regulations are discussed.

  • 3.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Boström, Lars
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Jansson McNamee, Robert
    Brandskyddslaget AB, Sweden.
    Milovanović, Bojan
    University of Zagreb, Croatia.
    Modeling of fire exposure in facade fire testing2017In: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 42, no 5, p. 475-483Article in journal (Refereed)
    Abstract [en]

    In this paper, a comparative simulation study on 3 large‐scale facade testing methods, namely,the SP Fire 105, BS 8414‐1, and the ISO 13785‐2 methods, is presented. Generally goodcorrespondence between simulations and experimental data has been found, provided thatthermal properties of the facade material and heat release rates are known; however, thecorrespondence deviates in close proximity of the fire source. Furthermore, a statistical ensemblefor evaluating the effects stemming from uncertainty in input data is used. Here, it wasfound using this statistical ensemble that the variability was smaller in the ISO 13785‐2compared to the BS 8414‐1 method. The heat release rates (HRR) used in the simulations wereadopted from measurements except for the ISO method where the information in the standardwas used to approximate the HRR. A quantitative similarity between the HRR in the ISOmethod and the British method was found.

  • 4.
    Antonsson, Ulf
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Lufttäta klimatskal under verkligaförhållanden2017Report (Refereed)
    Abstract [sv]

    Beständigheten hos klimatskalets lufttäthetsystem är helt avgörande för om näranollenergihus, passivhus och plushus kommer att fungera som det var tänkt över tid. Eftersom produkterna som säkerställer lufttätheten oftast befinner sig inuti konstruktionen kan det därför innebära stora ingrepp i byggnader om de behöver bytas ut i förtid. Att i laboratorium i förväg kunna utvärdera beständigheten hos det lufttätande systemet är viktigt och för detta behövs en provningsmetod.

    Det överordnade syftet med hela projektet är att utveckla en metod där hela system för lufttäthet kan undersökas. Detta så att god lufttäthet och låg energianvändning kan erhållas under lång tid hos framtidens lufttäthetssystem. Denna etapp av projektet har innehållit utveckling och provkörning av en ny provningsmetod. Provningsmetodiken har dokumenterats i SP-metod 5264, utgåva 2, bilaga 2 till denna rapport. Provningsmetoden har fungerat ypperligt vid pilotprovningarna. Man ser en förändring av lufttätheten vid mätningar före respektive efter värmebehandlingen. Provningsmetoden är mycket noggrann och känslig på så sätt att förändring i lufttätheten kan registreras.

    Provningsmetoden är ett mycket bra verktyg för producenter av lufttäthetssystem vid produktutveckling. Metoden är också lämplig för användning vid utvärdering av lufttäthetssystem för olika godkännandesystem och certifiering. Samtliga provade lufttäthetssystem var mycket lufttäta före värmebehandlingen. Alla systemen visar på resultat under 0,1 l/(s∙m²). Efter värmebehandlingen visar alla undersökta lufttäthetssystem dock en ökande luftgenomsläpplighet, i varierande grad.

    I projektet har även montage av lufttäthetssystem gjorts i miljöer som valts för att efterlikna realistiska byggarbetsplatsförhållanden. Alla de undersökta lufttäthetssystemen visar på förändringar i lufttätheten då montaget har skett i kall och fuktig miljö och vid montage i dammig miljö. Variationen mellan de olika systemen har dock varit ganska stor.

    Det är vår uppfattning om alla lufttäthetsystem i framtiden undersöks med hjälp av denna provningsmetod så kommer man att få en stark förbättring av lufttätheten och därmed lägre energianvändning.

    .

  • 5. Bellopede, R.
    et al.
    Castelletto, E.
    Schouenborg, Björn
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg.
    Marini, P.
    Assessment of the European Standard for the determination of resistance of marble to thermal and moisture cycles: recommendations for improvements2016In: Environmental Earth Sciences, ISSN 1866-6280, E-ISSN 1866-6299, Vol. 75, no 11, article id 946Article in journal (Refereed)
    Abstract [en]

    The bowing phenomenon is so relevant that two projects, EU funded, from 1999 studied it and a European Standard to assess the resistance to thermal and moisture cycles (influencing bowing) has been recently adopted. In particular, according EN 16306: 2013, measurements of bowing and flexural strength should be performed before and at the end of the ageing cycles. Additional non-destructive tests are recommended, but are not compulsory for the standard. Moreover, Annex A of EN 16306 contains guidance on the limit values for the selection of marble types suitable for outdoor uses, especially façade applications. Eleven varieties of marble have been tested by means of this laboratory ageing test. Non-destructive tests such as the measurements of ultrasonic pulse velocity (UPV), adjacent grains analysis, open porosity, and water absorption have been executed together with the conventional flexural strength test. The results obtained from image analysis on thin sections indicate that the AGA index may not always be correlated with the other tests: amount of bowing, loss of flexural strength, or loss of UPV. Some consideration of the decrease in mechanical resistance and the bowing in relation to the variety of marble tested and the limit values indicated in Annex A of EN 16306 can be noted. It is known that bowing and rapid strength loss occur in some varieties of marble when used as exterior cladding and other exterior applications. Additional conclusions have been drawn: bowing and flexural strength correlate well and can be used to assess the suitability of the marble to be employed in outdoors.

  • 6.
    Boubitsas, Dimitrios
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg. Lund University, Sweden.
    Chloride transport and chloride threshold values: studies on concretes and mortars with Portland cement and limestone blended cement2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Reinforced concrete is one of the most widely used building materials and if it is properly designed and produced, it is an extremely durable material with a service life up to 100 years. However, under certain environmental conditions the service life of reinforced concrete structures is more limited. Deterioration ofconcrete structure is in most cases caused by the penetration of aggressive media from the surrounding environment. Chloride initiated reinforcement corrosion is one of the major causes of deterioration of Concrete structures. One conflicting issue is how replacing Portland cement with mineral additions influences chlorideinitiated reinforcement corrosion. This issue is of immediate interest, as there is a steady growth in the use of cement blended with mineral additions, such as blast-furnace slag, fly ash and limestone filler. This is done by the cement and concrete industry to reduce the CO2 emissions linked to Portland cement manufacturing, bylimiting the use of clinker in the cement.The main objective of this work has been to further clarify the role of limestone filler as partial substitute to Portland cement on the two main decisive parameters for chloride induced reinforcement corrosion: chloride ingress rate and chloride threshold values. In the first part of this work the chloride ingress was studied both with accelerated laboratory methods and also after field exposure. The initial focus for the second part of the study was to determine the chloride threshold values for the binders investigated in the first part, so a comprehensive view of the effect of limestone addition on chloride initiated corrosion could be presented.However, during the work the need for the development of a practice-related method for determining the chloride threshold values was identified and the focus of the research was redirected to meet that need.The efficiency of limestone filler concerning chloride ingress showed to be dependent on replacement ratio, time (age) and on the test method. It was not possible to draw any rigid conclusion of the limestone filler’s efficiency regarding chloride ingress. But part of the inconsistency in the results was identified to be that limestone filler has two opposite effects on chloride ingress, on one hand contribute to a refinement of microstructure and on the other hand diminishing the chloride binding.The steel surface condition was shown to have a strong effect on the corrosion initiation, and can likely be one of the most decisive parameters attributing to the variability in the reported chloride threshold values obtained in laboratory experiments. The chloride threshold value for the sulphate resistant Portland cement fromthe laboratory experiments was estimated to be about 1% by weight of binder. For the concrete with limestone blended cement (CEM II/A-LL 42.5R) tested in this work the chloride threshold value was at the same level as for the sulphate resistant Portland cement. From the field study but with a somewhat different definition ofchloride threshold value, a chloride threshold value of about 1% by weight of binder was also estimated for ordinary Portland cement and sulphate resistance Portland with 5% silica fume exposed to marine environment.

  • 7.
    Capener, Carl-Magnus
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Anna, Pettersson Skog
    Emilsson, Tobias
    Malmberg, Jonatan
    Jägerhök, Tove
    Edwards, Ylva
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Grönatakhandboken: Vägledning2017Report (Other academic)
  • 8.
    Döse, Magnus
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg.
    Silfwerbrand, J.
    Jelinek, C.
    Trägårdh, Jan
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Hållbara byggnadsverk.
    Isaksson, M.
    Naturally occurring radioactivity in some Swedish concretes and their constituents - Assessment by using I-index and dose-model2016In: Journal of Environmental Radioactivity, ISSN 0265-931X, E-ISSN 1879-1700, Vol. 155-156, p. 105-111Article in journal (Refereed)
    Abstract [en]

    The reference level for effective dose due to gamma radiation from building materials and construction products used for dwellings is set to 1 mSv per year (EC, 1996, 1999), (CE, 2014). Given the specific conditions presented by the EC in report 112 (1999) considering building and construction materials, an I-index of 1 may generate an effective dose of 1 mSv per year. This paper presents a comparison of the activity concentrations of 4 0K, 226Ra and 232Th of aggregates and when these aggregates constitute a part of concrete. The activity concentration assessment tool for building and construction materials, the I-index, introduced by the EC in 1996, is used in the comparison. A comparison of the I-indices values are also made with a recently presented dose model by Hoffman (2014), where density variations of the construction material and thickness of the construction walls within the building are considered. There was a ~16-19% lower activity index in concretes than in the corresponding aggregates. The model by Hoffman further implies that the differences between the I-indices of aggregates and the concretes' final effective doses are even larger. The difference is due, mainly to a dilution effect of the added cement with low levels of natural radioisotopes, but also to a different and slightly higher subtracted background value (terrestrial value) used in the modeled calculation of the revised I-index by Hoffman (2014). Only very minimal contributions to the annual dose could be related to the water and additives used, due to their very low content of radionuclides reported.

  • 9. Falchi, Laura
    et al.
    Mueller, Urs
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Fontana, Patrick
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Balliana, Eleonora
    Izzo, Francesca
    Zendri, Elisabetta
    Artificial weathering of water-repellent mortars suitable for restoration applications2014In: Hydrophobe VII / [ed] Mimoso, J.-M., Charola, A.E., 2014Conference paper (Refereed)
  • 10.
    Flansbjer, Mathias
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Lindqvist, Jan Erik
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Meso Mechanical Study of Cracking Process in Concrete Subjected toTensile Loading2018In: Nordic Concrete Research, ISSN 0800-6377, Vol. 59, no 2, p. 13-29Article in journal (Other academic)
    Abstract [en]

    This project focused on how the cracking process in concrete is influenced by both the micro and meso structures of concrete. The aim was to increase knowledge pertaining to the effect of critical parameters on the cracking process and how this is related to the material's macroscopic properties. A methodology based on the combination of different experimental methods and measuring techniques at different scales was developed. Crack propagation during tensile loading of small-scale specimens in a tensile stage was monitored by means of Digital Image Correlation (DIC) and Acoustic Emission (AE). After testing, crack patterns were studied using fluorescence microscopy.

  • 11.
    Helsing, Elisabeth
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg.
    Lagar och regler vid renovering: en översikt2016Report (Other academic)
    Abstract [sv]

    Ordet renovering existerar inte i något av våra regelverk. Begreppet renovering ingår i det som benämns ändring av en byggnad i vilket ombyggnad ingår som en del.De tekniska egenskapskrav som gäller vid nybyggnad gäller i princip också vid ändring. Vid ombyggnad ska de uppfyllas för hela byggnaden eller, om detta inte är rimligt, den del av byggnaden som påtagligt förnyas genom ombyggnaden. Vid ändring gäller de för ändringen. Enkelt avhjälpta hinder mot tillgänglighet till eller användbarhet av lokaler dit allmänheten har tillträde ska dock alltid avhjälpas.När det gäller ändringar tillkommer dock ett krav på varsamhet, d.v.s. att man tar hänsyn till byggnadens karaktärsdrag och tar till vara byggnadens tekniska, historiska, kulturhistoriska, miljömässiga och konstnärliga värden. En byggnad som är särskilt värdefull från historisk, kulturhistorisk, miljömässig eller konstnärlig synpunkt får inte förvanskas.Kravet på varsamhet och förbudet mot förvanskning innebär att det är nödvändigt att ibland göra avsteg från de rent tekniska egenskapskraven som gäller vid nybyggnad när man genomför en ändring.Ändringsreglerna i BBR och EKS avser att förtydliga vilka av de egenskapskrav som gäller vid nybyggnad som man inte får göra avsteg från och i vilka fall det är möjligt att mot bakgrund av ändringens omfattning och byggnadens förutsättningar göra anpassningar.Vad som avses med ändringens omfattning och byggnadens förutsättningar förtydligas i BBR. När det gäller ändringens omfattning utgås från hur stor del av byggnaden som berörs, konsekvenserna för de tekniska egenskapskraven och byggnadens kulturvär-den. Motiveringar med hänsyn till byggnadens förutsättningar kan dels ha att göra med om det är fråga om omfattande ändringar eller ny användning. I sådana fall finns få skäl till avsteg från nybyggnadsnivån. Är det fråga om en kulturhistoriskt värdefull byggnad finns det större skäl. Tekniska skäl, som t.ex. att utrymme saknas eller att uppfylla ett krav medför att ett annat inte blir uppfyllt på ett godtagbart sätt kan också åberopas. Ekonomiska skäl baserade på byggnadens placering, utformning eller tekniska förutsättningar kan också vara motiveringar. Låg likviditet får dock inte beaktas. Därutöver kan även boendekvaliteter av praktisk eller upplevelsemässig art utgöra skäl för anpassning.Kravnivån vid ändring varierar också beroende på vilket krav det är fråga om. I BBR och EKS används följande terminologi:Ska: I princip inget utrymme för avvikelseSka ...om inte synnerliga skäl: Visst modifieringsutrymme finns om byggnaden ändå kan antas få godtagbara egenskaper och det inte är möjligt att tillgodose kravet fullt ut utan höga kostnader eller påtagligt negativa konsekvenser för övriga tekniska egen-skapskrav eller byggnadens kulturvärden.Ska eftersträvas: Kraven ska tillgodoses om det kan ske till en skälig kostnad och inte medför negativa konsekvenser för övriga tekniska egenskapskrav, byggnadens kulturvärden eller andra boende- och brukarkvaliteter. Har byggnaden redan den eftersträvade egenskapen finns inte utrymme för att försämra den om det inte finns synnerliga skäl.Dock får anpassningar av kraven aldrig medföra en oacceptabel risk för människors hälsa och säkerhetEn hel del av det som står i BBR, EKS och Hissreglerna är allmänna råd och inte absoluta krav, och ger exempel på godtagna konstruktionslösningar. Dessa är inte alltid möjliga att tillämpa vid ändring, utan man måste söka andra lösningar som ändå ger samma säkerhet.Reglerna ger för de olika egenskapskraven vägledning för eventuella anpassningar, förslag på alternativa lösningar t.ex. moderniseringar då äldre byggteknik använts.I hyreslagstiftningen är det främst två aspekter som berör ändringar: Hyresgästinfly-tande vid förbättrings- och ändringsarbete och villkor vid större förändring av hyran. I båda dessa fall krävs godkännande av hyresgäster eller tillstånd av hyresnämnd. Dock står det inget om att hyresgäster kan var med och påverka vad som ska ändras, t.ex. hur omfattande ändringarna ska vara.När det gäller bostadsrätter är det hur stora beslut ska tas som avhandlas. Om alla medlemmar inte är eniga har hyresnämnden en roll även här. En bostadsrättsinneha-vare har rätt att frånträda en bostadsrätt om avgiftsändringarna blir för stora. Bostadssätten återgår då till föreningen, mot skälig ersättning.

  • 12.
    Jacobsson, Mikael
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Betongskador i vattenverk2016Report (Other academic)
    Abstract [sv]

    Rapporten ger en översikt över betongskador i svenska vattenverk. Den presenterar bilder på typiska betongskador, hur de kan uppstå och var man kan hitta dem i vattenreningsprocessen. Den ska inspirera vattenverkens personal att lägga märke till betongskador i tid. Detta för att undvika mycket genomgripande reparationer av allvarligare skador i framtiden. Betong är det i särklass vanligaste materialet i svenska vattenverk. Det är mycket hållfast, men det finns det flera kemiska och fysikaliska processer som påverkar materialet negativt. Nedbrytningen av betongen kan ses på bassängernas sidor, både våta och torra. Men det är inte helt ovanligt att skador uppstår även inuti en betongkonstruktion utan att det syns på utsidan. Oavsett var skadorna börjar kan tillsynes obetydliga betongskador göra att konstruktionens bärighet försämras avsevärt. De flesta vattenverk lider av likartade betongskador. Yterosion och urlakning av betongytan är de vanligaste formerna av synliga betongskador på den våta sidan. På den torra sidan är det vanligare med armeringskorrosion, sprickbildning och läckage. De skador som är vanligast inuti en betongkonstruktion är expansion, korrosion och svartrost. Svartrost bildas när armeringsjärn korroderar under syrefattiga förhållanden. Den expanderar inte på samma sätt som annan rost utan kan fylla ut håligheter i betongen utan att det syns på ytan. De inre skadorna är särskilt allvarliga eftersom det kan vara svårt att observera dem utan att det görs en utförlig tillståndsbedömning. Inre skador kan på sikt göra att hela konstruktionens bärighet går förlorad. Därför är det viktigt att regelbundet låta undersöka betongkonstruktionerna. Projektet genomfördes av CBI Betonginstitutet, som utför åtskilliga tillståndsbedömningar på betongkonstruktioner i Sverige varje år. I många fall visar det sig att konstruktionerna är i relativt dåligt skick. Troligen beror det på att de flesta skador utvecklas mycket långsamt och gradvis. Dessutom är vattenverkspersonalen inte alltid medveten om hur betongskador kan se ut eller hur allvarliga de kan vara. Om medvetenheten hos personalen höjdes skulle troligen många betongskador upptäckas tidigare och reparationer skulle kunna sättas in innan skadorna har blivit allvarliga och kostsamma att åtgärda. Även om en skada upptäcks behöver den inte alltid repareras direkt. I stället bör man om man hittar en skada låta en betongexpert utföra en tillståndsbedömning på konstruktionen. Det innebär att man undersöker omfattningen av konstruktionens skador, om de behöver repareras omedelbart eller senare, vilken form av reparation som bör utföras och med vilka material. Man kan också få rekommendationer om hur den reparerade konstruktionen kan skyddas i fortsättningen. Om en reparation inte behöver utföras direkt bör i stället konstruktionen övervakas med vissa tidsintervall.

  • 13.
    Just, Alar
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Brandon, Daniel
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Fire Stops in Buildings2017Report (Other academic)
    Abstract [en]

    In a statistical study performed by the London fire brigade in the Real Fires Database it was found that out of 30 086 fires occurring between 2009 and 2011, fire spread beyond the floor of origin through gaps or voids occurred in 92 cases. This illustrates that the phenomenon is relatively rare. However, it can lead to severe property damage. Fires can spread invisibly within cavities of the structure, which has led to problems concerning the extinguishment of the fire. Cavity barriers function is to stop the fire spread through cavities. However, these cavity barriers have not always been effective.

    This report is the result of a study that aimed to:

    1. Develop a robust testing method for cavity barriers for cavities with combustible materials within walls, floors and other elements in buildings.

    2. Provide guidelines for the materials, installation, positioning, detailing and location of the cavity barriers.

    Additionally, a preliminary study is performed to assess some extinguishing strategies.

    Based on a study of characteristics of cavity fires, current standard fire tests for cavity barriers were revised for the use in cavities with combustible materials. From tests following the revised methodology, guidelines regarding the dimensions, installation and fire stopping design are provided.

  • 14.
    Just, Alar
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad, Träbyggande och boende.
    Brandon, Daniel
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad, Träbyggande och boende.
    Östman, Birgit
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad, Träbyggande och boende.
    Brandstopp i byggnadskonstruktioner: Resultat från SBUF projekt 129932016Report (Other academic)
    Abstract [sv]

    Bristande brandteknisk funktion hos byggnadstekniska detaljlösningar är ofta en starkt

    bidragande orsak till brandspridning. Flera incidenter de senaste åren visar tydligt att byggsystem

    med hålrum kan ha stor inverkan på brandförloppet och medföra stora egendomsskador i alla

    typer av byggnader. Befintliga rekommendationer om att brandstopp måste installeras i hålrum

    för att hindra att dolda bränder uppstår och sprids mellan brandceller följs tyvärr ofta inte inom

    praktiskt byggande.

    Syftet med projektet är att utveckla en lämplig metodik för att verifiera funktionen hos olika

    typer av brandstopp i byggnader, att dokumentera funktionen hos några typer av brandstopp

    enligt relevant metodik samt att ge underlag för riktlinjer om hur brandstopp ska utformas och

    användas. Resultaten ska även kunna användas för att bedöma befintliga detaljlösningar.

    Arbetet har inriktats främst på brandstopp för hålrum i modulhus. Olika typer av brandstopp för

    sådana hålrum har studerats bland annat genom provningar i modellskala. Befintlig

    provningsteknik har vidareutvecklats och en reviderad metodik har föreslagits.

    Som ett första resultat för praktisk användning har riktlinjer tagits fram för hur brandstopp ska

    utformas och användas i modulkonstruktioner. De främsta målgrupperna är bygg- och

    byggmaterialindustrin samt brandkonsulter

  • 15.
    Kovacs, Peter
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Ollas, Patrik
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Hemlin, Olleper
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Regelmässiga förutsättningar för takrenoveringar och solcellsinstallationer – en litteratursammanställning2018Report (Other academic)
    Abstract [en]

    The report presents a two-piece literature summary summarizing incentives and regulatory barriers to the renovation of multi-family houses, as well as general regulations, policies and other conditions for installations of solar cell installations. For developers and suppliers with interest in roof renovation with solar cells, the report aims to provide a picture of the conditions for such actions. The overall picture is that there is a rapid positive development of incentives and regulations specifically for solar cells. Additionally, regulations for energy efficiency and environmental certification can motivate property owners to carry out such combined approach.

    This report complements the project report for project "Environmental Roofing - Solar Energy Redevelopment" (Energy Agency Project Number: 41857-1) and is available via E2B2's website - http://www.e2b2.se/.

  • 16. Kurkinen, Eva-Lotta
    et al.
    Norén, Joakim
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad, Träbyggande och boende.
    Peñaloza, Diego
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad, Träbyggande och boende.
    Al-Ayish, Nadia
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    During, Otto
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Energy and climate-efficient construction systems: Environmental assessment of various frame options for buildings in Brf. Viva2018Report (Other academic)
    Abstract [en]

    In the collaborative forum Positive footprint housing® Riksbyggen is building the Viva residential quarter, which is a sustainability project at the very forefront of what is possible with contemporary construction. The idea is that this residential quarter should be fully sustainable in ecological, economic and social terms. Since 2013, a number of pilot studies have been completed under the auspices of the Viva project framework thanks to financing from the Swedish Energy Agency. The various building frame alternatives that have been evaluated are precast concrete, cast in-situ concrete and solid wood, all proposed by leading commercial suppliers. The report includes a specific requirement for equivalent functions during the use phase of the building, B. An interpretation has been provided that investigates the building engineering aspects in detail, as well as an account of the results based on the social community requirements specified in Viva, durability, fire, noise and energy consumption in the Swedish National Board of Building, Planning and Housing building regulations (BBR), plus Riksbyggen’s own requirements, Sweden Green Building Council’s Environmental Building Gold (Miljöbyggnad Guld) and 100-year life cycle. Given that the alternatives have different long-term characteristics (and also that our knowledge of these characteristics itself varies), these functional requirements have been addressed by setting up different scenarios in accordance with the EPD standard EN 15978. Because Riksbyggen has specified a requirement for a 100-year life cycle, we have also opted for an analysis period of 100 years. The results show no significant differences between concrete and timber structures for the same functions during the life cycle, either for climate or for primary energy. The minor differences reported are accordingly less than the degree of uncertainty involved in the study. The available documentation on the composition of the relevant intumescent paint coating on solid wood frames differs from source to source, so it was not possible to fully allow for the significance of this. The LCA has not included functional changes in the building linked to load-bearing characteristics, noise, moisture, health or other problems that may result in increased maintenance and replacement. The concrete houses have been dimensioned for 100 years, for instance, in accordance with tried and tested standards and experience. The solid wood house is not dimensioned in the same way, and this has led to us having to assume various scenarios.

    The results also show the following:

    • The uncertainties involved in comparing different structures and alternative solutions are very significant. The results are affected by factors such as life cycle, the functional requirements taken into consideration, transportation, design and structural details, etc.

    • Variations in the built items and a considerable degree of uncertainty in the assumptions make it difficult to obtain significant results on comparisons. Only actual construction projects with known specific data, declared from a life cycle perspective that takes into account actual building developer requirements and involving different scenarios (best, documented and worst-case) for the user stage can currently be compared.

    • In the other hand, comparisons restricted to different concrete structures only, or to different timber structures only, ought to involve a lower degree of uncertainty. These would then provide results that are significant as well as improvement requirements that are relevant.

    • There is potential for improving concrete by imposing requirements on the material

    • There is potential for improving solid wood frames by developing and guaranteeing well-documented long-term characteristics for all functional requirements.

    The LCAs were performed as an iterative process where all parties were given the opportunity to submit their viewpoints and suggestions for changes during the course of the work. This helped ensure that all alternatives have been properly thought through.

    Because, during the project, Riksbyggen opted to procure a concrete frame, in the final stage the researchers involved focused on ensuring the procurement process would result in the concrete frame as built meeting the requirements set out above. As things currently stand, the material requirements for the concrete are limited by the production options open to the suppliers, and this is therefore being investigated in the manufacture of precast concrete frames for the Viva cooperative housing association.

  • 17.
    Lagerblad, Björn
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Hållbara byggnadsverk.
    Mechanism and mode of carbonation of cementitious materials2017Report (Other academic)
    Abstract [en]

    Concrete is the most common and widely used construction material in the world, with a consumption of approximately 1.5 tons per capita annually worldwide. This consumes 3000 million ton of cement, around 400 kg per capita. Sweden consumes around 250 kg of cement per capita.  The production of Portland cement consumes around 3500 MJ energy per ton. In addition, Portland cement production releases considerable amounts of CO2 when limestone is heated and calcinated. With 800 kg of CO2 per ton of cement around 5 % of the global release of CO2 comes from cement clinker production. About half of this comes from the limestone. Concrete, however, also binds CO2 when it is carbonated. In a geological time perspective, all concrete will carbonate and thus half of the released CO2 will be bound to carbonated concrete, which would reduce the environmental impact (Xi et al 2016). I reality the absorption is much less, and is related to the time interval of interest.  How fast CO2 will be absorbed depends on the type of concrete or cementitious material, site of the concrete, amount of CO2 in the environment and the environment as such, etc. It is also depending on the amount CO2 in the atmosphere and the temperature. In the end, to be able to calculate the uptake it is important to find out what happens with the concrete after demolition and if it is possible to increase the speed of carbonation.  This report mainly cover the mechanism and mode of carbonation to be able to get a better and more accurate understanding of how to calculate carbonation and CO2 uptake.  This project was funded by the Swedish Consortium for financing Basic research in the Concrete Field. The consortium members are: Cementa, Färdig Betong, Abetong, Swerock, Betongindustri and Strängbetong.

  • 18. Li, Ying Zhen
    Study of fire and explosion hazards of alternative fuel vehicles in tunnels2018Report (Other academic)
    Abstract [en]

    An investigation of fire and explosion hazards of different types of alternativefuel vehicles in tunnels is presented. The different fuels are divided into four types:liquid fuels, liquefied fuels, compressed gases, and electricity, and detailed parameters are obtained. Three types offire hazards for the alternativefuel vehicles: pool fires, jet fires and fireballs are identified andinvestigated in detail. Fromthe perspective of pool fire size, the liquid fuels pose equivalent or evenmuch lower fire hazards compared to the traditionally used fuels, but theliquefied fuels may pose higher hazards. For pressurized tanks, the fires are generally much larger in size butshorter in duration. The gas releases from pressure relief devices and the resulting jet firesare highly transient. Forhydrogen vehicles, the fire sizes are significantly higher compared to CNGtanks, while flame lengths only slighter longer. Investigation of the peakoverpressure in case of an explosion in a tunnel was also carried out. Theresults showed that, for the vehicles investigated, the peak overpressure of tankrupture and BLEVE are mostly in a range of 0.1 to 0.36 bar at 50 m away. Thesituations in case of cloud explosion are mostly much more severe andintolerable. These hazards need to be carefully considered in both vehiclesafety design and tunnel fire safety design. Further researches on thesehazards are in urgent need.

  • 19.
    Li, Ying Zhen
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Huang, Chen
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Svensson, Robert
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Ingason, Haukur
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Husted, Bjarne
    Lund University, Sweden.
    Runefors, Marcus
    Lund University, Sweden.
    Wahlqvist, Jonatan
    Lund University, Sweden.
    Verification, validation and evaluation of FireFOAM as a tool for performance design2017Report (Other academic)
    Abstract [en]

    The open source CFD code FireFOAM has been verified and validated against analytical solution and real fire tests. The verification showed that FireFOAM solves the three modes of heat transfer appropriately. The validation against real fire tests yielded reasonable results. FireFOAM has not been validated for a large set of real fires, which is the case for FDS. Therefore, it is the responsibility of the user to perform the validation, before using the code. One of the advantages of FireFOAM compared to the Fire Dynamic Simulator is that FireFOAM can use unstructured grid. FireFOAM is parallelised and scales reasonable well, but is in general considerably slower in computation speed than the Fire Dynamic Simulator. Further, the software is poorly documented and has a steep learning curve. At present it is more a tool for researchers than for fire consultants.

  • 20.
    Li, Ying Zhen
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Ingason, Haukur
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Analysis of Muskö tunnel fire flows with automatic sprinkler activation2017Report (Other academic)
    Abstract [en]

    The focus of the present study is analyzing the best position of a sprinkler nozzle in a tunnel cross-section in the Muskö tunnel, south of Stockholm, Sweden. Activation of the sprinklers installed along the centerline and along the sidewall is investigated through analysis of full scale experiments and by three dimensional numerical modelling. Then the tunnel velocity is analyzed by one dimensional numerical modelling for various fire locations in the Muskö tunnel. For both activating the automatic sprinklers nearby the fire and avoiding activation of the sprinklers further downstream, the automatic sprinklers are recommended to be installed along the centerline of the tunnel. It has also been found that the tunnel velocity varies significantly with the fire location. When the fire is on the left side of the tunnel, the flow velocity mostly remains in a range of 1 m/s (positive or negative) within the first 10 minutes, which helps early activation of the automatic sprinklers. When the fire is on the right side of the tunnel, the flow velocity mostly remains within a range of -1 m/s and 1 m/s within the first 5 minutes, and the velocity mostly increases to 2 m/s at around 10 min. Therefore, the scenario for fire located on the left side is better than that for fire on the right side, especially when it is located between the middle of the right section and the right portal. As one typical case with fire on the right side, the tunnel velocity maintains at 1 m/s for the first 5 min and gradually increases to 2 m/s at 10 min. Under such conditions, the automatic sprinkler system is expected to perform well. 

  • 21.
    Mangold, Mikael
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Österbring, Magnus
    Chalmers University of Technology, Sweden.
    Overland, Conny
    University of Gothenburg, Sweden.
    Johansson, Tim
    Luleå University of Technology, Sweden.
    Wallbaum, Holger
    Chalmers University of Technology, Sweden.
    Building Ownership, Renovation Investments,and Energy Performance - A Study of Multi-FamilyDwellings in Gothenburg2018In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 10, no 5, article id 1684Article in journal (Refereed)
    Abstract [en]

    The European building stock was renewed at a rapid pace during the period 1950–1975.In many European countries, the building stock from this time needs to be renovated, and thereare opportunities to introduce energy efficiency measures in the renovation process. Informationavailability and increasingly available analysis tools make it possible to assess the impact of policyand regulation. This article describes methods developed for analyzing investments in renovationand energy performance based on building ownership and inhabitant socio-economic informationdeveloped for Swedish authorities, to be used for the Swedish national renovations strategy in2019. This was done by analyzing measured energy usage and renovation investments made duringthe last 30 years, coupled with building specific official information of buildings and resident areacharacteristics, for multi-family dwellings in Gothenburg (N = 6319). The statistical analyses showthat more costly renovations lead to decreasing energy usage for heating, but buildings that havebeen renovated during the last decades have a higher energy usage when accounting for currentheating system, ownership, and resident socio-economic background. It is appropriate to includean affordability aspect in larger renovation projects since economically disadvantaged groups areover-represented in buildings with poorer energy performance.

  • 22. Meng, Birgit
    et al.
    Fontana, Patrick
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Mueller, Urs
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Bürgisser, Philip
    Influence of natural pozzolans on the risk of Alkali Silica Reaction2013In: International Conference on Advances in Cement and Concrete Technology in Africa, BAM Federal Institute for Materials and Testing , 2013, p. 801-808Conference paper (Refereed)
  • 23. Miccoli, L.
    et al.
    Drougkas, A.
    Mueller, Urs
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg.
    In-plane behaviour of rammed earth under cyclic loading: Experimental testing and finite element modelling2016In: Engineering structures, ISSN 0141-0296, E-ISSN 1873-7323, Vol. 125, p. 144-152Article in journal (Refereed)
    Abstract [en]

    The purpose of this paper is to numerically simulate the in-plane behaviour of rammed earth walls under cyclic shear-compression tests. The experimental testing allowed obtaining the maximum horizontal loads, the displacement capacity and the level of non-linear behaviour of the respective load-displacement relationships as well as the failure modes. The calibration of the numerical model (finite element method) was carried out based on the experimental results. Within this framework, a micro-modelling approach was considered. The behaviour of the rammed earth material was simulated using a total strain rotating crack model. A Mohr-Coulomb failure criterion was used to reproduce the behaviour of the interfaces between the layers. Although the numerical results achieved a satisfactory agreement with the experimental results a sensitivity analysis of the parameters involved was performed. The sensitivity analysis aimed at determining which parameters of the model have a significant impact in the model's results. As expected the sensitivity analysis pointed out that the sliding failure occurrence is mainly influenced by two parameters of the interface elements: the interface tensile strength fit and the friction angle φ. Moreover the cohesion c and the layers thickness showed a limited effect on the shear behaviour. It should be noted that the results mentioned above are related to the cases where a significant level of vertical compressive stress σ is employed.

  • 24. Miccoli, Lorenzo
    et al.
    Fontana, Patrick
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Ziegert, C
    Perrone MEng, Chiara
    Mueller, Urs
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Charakterisierung und Modellierung der mechanischen Eigenschaften von Lehmsteinmauerwerk - Mechanical Characterization and modelling of earth block masonry2012In: Mauerwerk, Vol. 16, no 6, p. 279-292Article in journal (Refereed)
    Abstract [en]

    Knowledge of the material properties and failure mechanisms of earthen materials is limited and scattered. Within the framework of the NIKER project (www.niker.eu) funded by EC, the mechanical properties of earthen material elements were therefore determined under static compression and shear loads. The aim was to obtain fundamental data on deformation behaviour and failure mechanisms of earthen material structural elements and to describe them by means of a numerical model. The test results confirmed the brittle behaviour of earth block masonry under monoaxial compressive load and showed that the failure of earth block masonry under shear load occurs by sliding of the earth blocks along the mortar joints after initial cracking in mortar joints and earth block. Numerical macro modelling showed satisfying results with regard to stress‐strain behaviour, but the simulated crack pattern was not consistent with experimental observations. In the case of earth block masonry, it is thus necessary to use micro modelling approaches in order to correctly predict the failure process at local level.

  • 25. Miccoli, Lorenzo
    et al.
    Fontana, Patrick
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Ziegert, Christof
    Perrone, Chiara
    Mueller, Urs
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Charakterisierung und Modellierung der mechanischen Eigenschaften von Lehmsteinmauerwerk - Mechanical Characterization and Modelling of Earth Block Masonry2012In: Masonry, ISSN 1432-3427, E-ISSN 1437-1022, Vol. 16, no 6, p. 279-292Article in journal (Refereed)
  • 26. Miccoli, Lorenzo
    et al.
    Garofano, Angelo
    Fontana, Patrick
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Mueller, Urs
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Static behaviour of earth block masonry: experimental testing and Finite Element Modelling2014In: 9th International Masonry Conference (IMC), Guimarães, Portugal, 2014Conference paper (Other academic)
  • 27.
    Mueller, Urs
    et al.
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Lundgren, Monica
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Malaga, Katarina
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Development of pore structure and hydrate phases of binder pastes blended with slag, fly ash and metakaolin – A comparison2015In: The 14th International Conress on the Chemistry of Cement, 2015Conference paper (Refereed)
  • 28.
    Mueller, Urs
    et al.
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Malaga, Katarina
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Influence of hydrophobicity and oleophobicity on cleaning graffiti on concrete panels and natural stones2012In: Concrete Repair, Rehabilitation and Retrofitting III (ICCRRR), TAYLOR and FRANCIS GROUP, LONDON, UK , 2012, p. 269-275Conference paper (Refereed)
    Abstract [en]

    Anti-Graffiti Systems (AGS) are meant to make the cleaning process more efficient by inserting a layer between the paint and the substrate. This layer can have a low surface energy thus make it difficult for the paint to stick to the substrate or it may be easily removed together with the paint. This paper is presenting results from a study of how hydrophobicity and oleophobicity influence the cleaning efficiency of graffiti paints from concrete and natural stones. The results demonstrated that high hydrophobicity and high oleophobicity are not guaranteeing satisfying cleaning effects. The physical properties of a substrate in combination with the characteristics of the AGS layer decide about the cleaning effect.

  • 29.
    Mueller, Urs
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg.
    Miccoli, L.
    Fontana, P.
    Development of a lime based grout for cracks repair in earthen constructions2016In: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 110, p. 323-332Article in journal (Refereed)
    Abstract [en]

    The study presents the results from the development of a grouting material based on hydrated lime with addition of pozzolana, which is referred to as hydraulic lime, suitable for the repair of cracks in a variety of earthen building techniques. The goal was to develop a material also compatible with earthen structures exposed to dynamic loads. The grouting mortar was designed to be adaptable in strength properties and at the same time to have sufficient robustness for preparation and use on the construction site. Results showed a satisfactory performance of the grout concerning fresh and hardened mortar properties as well as injectability.

  • 30.
    Mueller, Urs
    et al.
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Schlegel, Moriz-Caspar
    Emmerling, Franziska
    Malaga, Katarina
    Novel techniques for studying damage mechanisms of cementitious matrices affected by sulphate attack2012In: fib symposium Concrete Structures for Sustainable Community / [ed] Bager, D.H., Silfwerbrand, J., 2012, p. 267-270Conference paper (Refereed)
  • 31.
    Mueller, Urs
    et al.
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Williams Portal, Natalie
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Flansbjer, Mathias
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Malaga, Katarina
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Textile Reinforced Reactive Powder Concrete and its Application for Facades2017Conference paper (Refereed)
    Abstract [en]

    Reactive powder concrete (RPC) is a fairly novel material with extraordinary strength and durability properties. Due to these properties, it is increasingly being utilized also for external facade cladding thus enabling a considerable reduction in the thickness of concrete elements. Commercial RPC formulations on the market have drawbacks in terms of sustainability due to their high clinker content and heat curing which is often applied to increase final strength and material density. The presented study focusses on improved formulations with higher replacement levels of cement clinker by supplementary cementitious materials (SCMs). One different mix formulation was designed and tested in terms of mechanical properties. The formulation was combined with carbon textile reinforcements primarily to enhance the flexural and tensile behavior of the material. The results showed that even with clinker replacement levels of up to 33 % of the total binder amount, a satisfactory mechanical performance of the RPC mix could still be achieved. Fairly steep strength gains rendered heat treatment unnecessary. The incorporation of carbon textile fiber grids proved to be effective in improving the post peak performance of the RPC. However, their performance depended strongly on the bond between the carbon grid and the RPC. Higher moister contents in the concrete proved to reduce the bond strength between the carbon textile and the cement paste. This is maybe less relevant for facades but structural elements with textile reinforcement and RPC might perform less well in completely submerged environment.

  • 32. Månsson, Hans
    et al.
    Henrik, Radomski
    Olenfalk, Pia
    Trägårdh, Jan
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Edwards, Ylva
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Lundgren, Dennis
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Mansfeldt, Nikolaj
    Kinnmark, Mikael
    Nilsson, Alexander
    Norderup Michelson, Elisabeth
    Jutewik, Mikael
    Hellqvist, Peter
    Bylin, Anders
    Ullsten, Åsa
    Wallin, Magnus
    Samuelsson, Hans
    Svenningsson, Catharina
    Gustavsson, Per
    Olofsson, Mikael
    Antonsson, Ulf
    Skärin, Jörgen
    Lejonmark, Sebastian
    Grönatakhandboken: Betong, isolering och tätskikt2017Report (Other academic)
  • 33.
    Nele Mäger, Katrin
    et al.
    Tallinn University of Technology, Estonia.
    Just, Alar
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Development of Design Equations for Termoträ Fire Protect for the Component Additive Method2017Report (Other academic)
    Abstract [en]

    This report details the development of effective thermal properties and design equations for Termoträ Fire Protect which can be used for the improved component additive method for fire design of timber structures.

  • 34.
    Ochoterena, Raul
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Försth, Michael
    RISE - Research Institutes of Sweden, Safety and Transport, Safety. Luleå University of Technology, Sweden.
    The effect of thermochromic coatings of VO2 on the fire performance of windows2018In: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 42, no 7, p. 873-876Article, review/survey (Refereed)
    Abstract [en]

    The effect of thermochromic coatings of vanadium dioxide (VO2) on the fire performance of windows was experimentally tested. Prototypes were subjected to radiant heat and the radiation transmitted through the specimens was measured as a function of time. The results indicate that windows coated with VO2 can reduce radiative heat transfer from fires and thereby also reduce or prevent fire spread. The results clearly show that VO2coatings on BK7 substrates hinder approximately 30% of the transmission of radiation from fire sources when compared with the performance of uncoated windows. It is expected that VO2 will not be solely implemented for the purpose of increasing fire performance of windows, but it will rather provide a secondary positive effect if such windows are realized for energy‐saving purposes.

  • 35.
    Olsson, Jörgen
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology. RISE Research Institutes of Sweden.
    Linderholt, Andreas
    Impact evaluation of a thin hybrid wood based joist floor2016In: Proceedings of ISMA 2016, presented at the International Conference on Noise andVibration Engineering (ISMA) / [ed] Sas, P; Moens, D; VanDeWalle, A, Leuven, Belgium: Katholieke University Leuven , 2016, s. 589-602, Växjö, 2016Conference paper (Refereed)
    Abstract [en]

    The purpose of this paper is twofold. The first aim is to develop a numericalanalysis procedure, by combining FRFs from FE-models with analyticalformulas for sound emission and transmission from the ceiling anddownwards within a room with four walls. The aim is to, by applying thisapproach; accomplish a tool which calculates the relative impact soundbetween different joist floors, in the low frequency range. The second aim is tobenchmark a thin hybrid wooden based joist floor with similar thickness,surface weight and global bending stiffness as a concrete hollow core floorstructure. What will be the difference in sound transmission? The question isrelevant since it may be necessary to make thinner wood based joist floors inhigh rise buildings, if wood should stay competitive against concrete. Theresults show that the direct transmissions of impact sound are very similararound the first bending mode. As the frequency increases, the modes in thestructures differ significantly. Below 100 Hz, the concrete floor has 4 modes,while the hybrid joist floor has 9 modes. As the frequency increases the soundradiation characteristics differs. The results show that it is possible to havesimilar sound transmission properties around the first bending modes for ahybrid based joist floor and a hollow core concrete floor structure with similar thicknesses. At the first modes of the structure, the information about thesurface weight and global bending stiffness are useful for prediction of soundtransmission properties but for higher modes, they are not sufficient.

  • 36.
    Olsson, Jörgen
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology. RISE Research Institutes of Sweden.
    Linderholt, Andreas
    Low Frequency Force to Sound Pressure Transfer Function Measurements Using a Modified Tapping Machine on a Light Weight Wooden Joinst Floor2016In: LOW FREQUENCY FORCE TO SOUND PRESSURE TRANSFERFUNCTION MEASUREMENTS USING A MODIFIED TAPPING MACHINEON A LIGHTWEIGHT WOODEN JOIST FLOOR, 2016Conference paper (Other academic)
    Abstract [en]

    In recent years research has shown that low frequency impact sound is of significant importance for inhabitants´ perception of impact sound in buildings with light weight wooden joist floors. The tapping machine is well defined as an excitation device and is a standard tool for building acoustics. However, the excitation force spectrum generated for each individual floor is unknown when using a tapping machine. In order to increase the possibilities to compare simulations to impact sound measurements, there is a need for improvement of impact sound measurement methods. By measuring the input force spectrum by a modified tapping machine and the sound in the receiver room, transfer functions can be achieved.In the light weight wooden building used for the evaluation test of the proposed method, structural nonlinearities are evident in the frequency response functions stemming from different excitation levels. This implies that for accurate FRF-measurements in low frequencies, excitation magnitudes that are similar to these stemming from human excitations should preferably be used.

  • 37.
    Olsson, Jörgen
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Bygg och Mekanik.
    Linderholt, Andreas
    Linneuniversitetet, Sweden.
    Jarnerö, Kirsi
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Bygg och Mekanik.
    Low frequency sound pressure fields in small rooms in wooden buildings with dense and sparse joist floor spacings2015In: Proceedings of the Internoise 2015 conference: 44th International Congress and Exposition on Noise Control Engineering / [ed] Maling G.,Burroughs C., The Institute of Noise Control Engineering of the USA , 2015, 2015Conference paper (Refereed)
    Abstract [en]

    Using wood as the main construction material is a potential solution to achieve sustainable buildings. Previous research has shown that frequencies below 50 Hz are of significant importance for the perception of impact sound by residents living in multi-story buildings having light weight wooden frameworks. The standards used for impact sound measurements today are developed for diffuse fields above 50 Hz. For instance due to requirements concerning wall reflections, these methods are not applicable for low frequencies within small rooms. To improve measurement methods, it is important to know the nature of the full sound distribution in small rooms having wooden joist floors. Here, impact sound measurements with microphone arrays are made in two small office rooms having the same dimensions. The rooms represent two extremes in design of joist floors; one with closely spaced wood joists and the other with widely spaced joists. An impact ball is used for excitation the room being measured from the room above. The results show that there are significant variations in the sound pressure, especially in the vertical direction. Here, measurement techniques of impact sound in the low frequency range in small rooms in wooden buildings are evaluated and potential improvements are proposed.

  • 38. Olsson, Jörgen
    et al.
    Sjökvist, Lars-Göran
    Jarnerö, Kirsi
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Low frequency measurements of impact sound performance in light weight timber frame office buildings2012In: Proceedings of EURONOISE 2012, European Acoustics Association, European Acoustics Association (EAA), 2012, 2012Conference paper (Refereed)
    Abstract [en]

    There is little data available of low frequency impact sound response of light weight woodenbuildings. The ISO 140-7, 717-2 standards normally used of impact sound is limited down to 50Hz. The response in low frequency area is of interest for human comfort. In the present work lowfrequencyimpact sound measurements were carried out in two modern office buildings withlightweight timber frame. The purpose was to assess the levels of impact sound transmissionbelow 50 Hz in these construction types. The low frequency impact sound levels are compared tothe higher. Both the tapping machine and the impact ball are used for excitation. It is seen that thepresent constructions have their highest levels below or close to 50 Hz when excited by the impactball. From the office rooms sharing joist floor with corridor there is seen increased levels of lowfrequency impact sound. Up to 10-15 dB higher impact sound was detected compared to roomwith joist floor separated from corridor.

  • 39. Pettersson Skog, Anna
    et al.
    Jonatan, Malmberg
    Emilsson, Tobias
    Jägerhök, Tove
    Capener, Carl-Magnus
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Grönatakhandboken: Växtbädd och vegetation2017Report (Other academic)
  • 40.
    Plos, Mario
    et al.
    Chalmers University of Technology, Sweden.
    Shu, Jiangpeng
    Chalmers University of Technology, Sweden.
    Zandi, Kamyab
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute. Chalmers University of Technology, Sweden.
    Lundgren, Karin
    Chalmers University of Technology, Sweden.
    A multi-level structural assessment strategy for reinforced concrete bridge deck slabs2017In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 13, no 2, p. 223-241Article in journal (Refereed)
    Abstract [en]

    This paper proposes a multi-level assessment strategy for reinforced concrete bridge deck slabs. The strategy is based on the principle of successively improved evaluation in structural assessment. It provides a structured approach to the use of simplified as well as advanced non-linear analysis methods. Such advanced methods have proven to possess great possibilities of achieving better understanding of the structural response and of revealing higher load-carrying capacity of existing structures. The proposed methods were used for the analysis of previously tested two-way slabs subjected to bending failure and a cantilever slab subjected to a shear type of failure, in both cases loaded with concentrated loads. As expected, the results show that more advanced methods yield an improved understanding of the structural response and are capable of demonstrating higher, yet conservative, predictions of the load-carrying capacity. Nevertheless, the proposed strategy clearly provides the engineering community a framework for using successively improved structural analysis methods for enhanced assessment in a straightforward manner.

  • 41.
    Sandberg, Karin
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Pousette, Anna
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Östman, Leif
    University of Applied Sciences, Finland.
    Concept for renovation of facades with prefabricated wood elements2018Report (Other academic)
    Abstract [en]

    There is a major need of cost-effective renovations that lead to lower energy consumption and better environment. The aim of a Nordic built project was to develop a concept for industrially prefabricated insulated elements for renovation and upgrading of building envelopes. The project with participants from Sweden, Finland and Norway focused on increased prefabrication based on wood for a sustainable solution. This report presents results from the project including a Swedish pilot case with the newly developed prefabricated building system. The prefabricated wood elements are produced by Termowood in Norway. Several studies have been done about renovation of facades, including attitudes and costs, and about important properties of the element system, for example energy savings, thermal bridges, moisture risks, environmental impacts, production and installation.

    The renovated building in the pilot case is a one-storey office building located in Skellefteå in the north of Sweden. Energy performance, thermal bridges, risk of moisture problems, LCA, applicability of the renovation method and assembly time were evaluated during the planning and execution of the renovation. Results from this pilot case showed that the elements were very light and easy for one person to handle at the building site. There is a great potential to further reduce the assembly time on site with improved joints and element sizes adapted to the building as well as improved batch packaging from the factory. With 100 mm insulation, the renovation gives a certain energy saving. LCA calculations showed that the reduction of climate impact due to energy savings during a service life of 50 years corresponds to the climate impact of the renovation measures. With a thicker insulation, the reduction in climate impact during the use phase of the building would increase more than the climate impact of the renovation. There is also a potential to reduce climate impact from the wall element by selecting materials produced closer to the element factory and with a greater share of renewable energy.

  • 42. Shu, J.
    et al.
    Plos, M.
    Zandi, Kamyab
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg.
    Johansson, M.
    Nilenius, F.
    Prediction of punching behaviour of RC slabs using continuum non-linear FE analysis2016In: Engineering structures, ISSN 0141-0296, E-ISSN 1873-7323, Vol. 125, p. 15-25Article in journal (Refereed)
    Abstract [en]

    Failure of reinforced concrete (RC) slabs without shear reinforcement in punching has been a challenging problem for nonlinear finite element (FE) analysis. To improve the analysis approach, this study was conducted by developing a nonlinear FE analysis method for slabs subjected to punching failure without shear reinforcement, using three-dimensional continuum elements. The influence of several modelling choices were investigated by comparing such results as loadcarrying capacity, load-deflection response and crack pattern from the FE analyses with available experimental data. The proposed method shows the possibility of accurately predicting the load-carrying capacity and realistically describing the behaviour of slabs.

  • 43.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Utredning - branntekniske ytelser for kledninger og overflater2018Report (Other academic)
    Abstract [en]

    The Norwegian Building Authority (DiBK) has asked RISE Fire Research to review the preaccepted fire performances for coverings and linings in the guidelines to the Norwegian building regulations. Requirements for both interior and exterior coverings and surfaces(façades) have been evaluated.

    The review is based on a study of previous and existing Norwegian building regulations, and in addition, we have also examined how the classes for coverings and linings are applied and interpreted in the Swedish and Danish building regulations.

    Today's pre-accepted fire performance, class B-s3, d0, for exterior cladding including a cavityon facades is evaluated, based on the British investigations after the fire in Grenfell Tower inLondon in June 2017. A simple assessment of how the façade systems that were tested according to the British standard BS 8414-1 probably would behave if tested according to the method SP FIRE 105.The report concludes with several recommendations on revision of the text in the guidelines to the building regulations TEK17 intended to prevent misunderstandings regarding the fire regulations for coverings and linings.

  • 44.
    Stolen, Reidar
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stensaas, Reidar
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Solcelleteknologi og brannsikkerhet2018Report (Other academic)
    Abstract [en]

    The use of photovoltaic (PV) technology in Norway is increasing. In this study, fire safety challenges of PV technology are studied. Fire ignition, fire spread and fire extinguishing are investigated. The study forms a knowledge base for safeguarding fire safety during assembly, operation and during firefighting efforts, and to form unified and clear regulations. The results show:

    Fire ignition: PV installations contain many electric connections which can be potential ignition sources, as well as a small volume of combustible materials. These provide everything needed to initiate a fire. It is important that all connections in a PV installation are robust and can withstand the stress they are exposed to throughout their lifetime, without causing malfunction that could cause a fire.

    Fire spread: For building attached photovoltaics, there are cavities between the module and the building. If there is a fire in this cavity, the produced heat could be trapped, which could lead to a more rapid and extensive fire spread than if the building surface were uncovered. In large scale tests with PV modules mounted on a roof covering, the fire spread under the whole area covered with modules, but stopped when approaching the edge. This demonstrates the importance of sectioning when mounting PV installations, to avoid fire spread to the whole roof. An option is to use materials with limited combustibility as roof covering below the PV module, to withstand the increased heat exposure from the PV modules. The cavity between module and building could potentially also alter the air flow along the building, which in turn could affect the fire spread.

    Firefighting: Firefighters need information on whether there is a PV installation in the building, and where there are electrical components. During firefighting efforts, the fire service must consider the danger of direct contact, and danger of arcs and other faults that could lead to new ignition points. Fresh water can be used as an extinguishing agent. This must be applied from at least 1 meter distance with spread beam and at least 5 meters distance with a focused beam. PV modules can complicate fire extinguishing as they represent a physical barrier between the fire fighter and the area to extinguish, and by creating areas which should be avoided due to danger of components with voltage. When these points are considered, building attached photovoltaics should not be a problem.

    Further work: For building attached photovoltaics, there is little research on vertical mounting (on facades), and on how changed fire dynamics could affect fire spread and extinguishing. Also, today there is an increasing use of building integrated photovoltaics, which could potentially give many new challenges for fire safety and for regulations, as these are a part of the building and at the same time electrical components. German statistics indicate that there is an increased fire risk for these types of installations, compared to building attached photovoltaics, making this an important focus area for further work.

  • 45.
    Strömgren, Michael
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Nordic Fire Safety Engineering and Tall Buildings in Sweden2017Conference paper (Other (popular science, discussion, etc.))
  • 46.
    Tahershamsi, M.
    et al.
    Chalmers University of Technology, Sweden.
    Fernandez, I.
    Chalmers University of Technology, Sweden.
    Lundgren, K.
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute. Chalmers University of Technology, Sweden.
    Zandi, Kamyab
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg. Chalmers University of Technology, Sweden.
    Investigating correlations between crack width, corrosion level and anchorage capacity2017In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 13, no 10, p. 1294-1307Article in journal (Refereed)
    Abstract [en]

    In assessing existing structures, inspection results need to be linked to the effects on load-carrying capacity; to provide such information, this study has investigated the correlation between splitting crack width, corrosion level and anchorage capacity. The study was based on 13 reinforced concrete beams that had been exposed to natural corrosion for 32 years, 11 beams with splitting cracks and 2 without. The crack pattern and widths were documented before undergoing structural testing of anchorage capacity. Thereafter, the reinforcement bars were extracted and their corrosion levels measured using two methods, gravimetric weight loss and 3D scanning. The corrosion level from the weight loss method was approximately twice as large; possible reasons are horizontal or subsurface corrosion pits, and the cleaning method. Further, for the same corrosion level, the specimens in this study had much larger crack widths and slightly lower bond capacity than the artificially corroded tests in the literature; a possible reason is that these specimens had been subjected to combined corrosion and freezing. However, the corrosion level and reduction in bond capacity related to crack width were both lower in the present than in previous studies in the literature. Thus, by formulating a damage indicator from the damage visible in the form of crack widths from artificial test data, the structural capacity is estimated to be on the safe side.

  • 47.
    Vylund, Lotta
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Palmkvist, Krister
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Taktik och metodik för släckning av höga trähus2017Report (Other academic)
    Abstract [en]

    Different extinguishment strategies for fires in cavities in tall timber buildings are presented together with their effectiveness and possibility to minimize water damages. In addition are exercises suggested to give training in how to extinguish fires in cavities in tall timber buildings.

    Tall timber buildings are well fire protected today, but wood is a combustible material and the spread of fire to cavities sometimes occur. The first action when there is a hidden fire in a cavity is to identify the structure of the building. Infrared (IR) cameras are a good tool for identifying the building structure and indicate the location of the fire. However, it is important to have a good basic training of using the camera in order to correctly interpret the IR images.

    The most important thing during the extinguishing work is to avoid opening up the cavities and thereby add oxygen to the fire before the fire is under control. Extinguishing media must therefore be applied through small openings. Tests have shown that, among water-based extinguishing media, the cutter extinguisher is the most efficient for fires in cavity with the least water supply. Potential other extinguishing agents are nitrogen or carbon dioxide, but techniques and tactics when using these extinguishing media must be further developed. The main drawback of these media is the limited cooling capabilities of the surfaces and gas volume.

  • 48.
    Williams Portal, Natalie
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Betong & Berg. Department of Civil and Environmental Engineering, Chalmers University of Technology.
    Flansbjer, Mathias
    RISE, SP – Sveriges Tekniska Forskningsinstitut. Department of Civil and Environmental Engineering, Chalmers University of Technology.
    Johannesson, Pär
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Malaga, Katarina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Lundgren, K.
    Tensile behaviour of textile reinforcement under accelerated ageing conditions2016In: Journal of Building Engineering, ISSN 2352-7102, Vol. 5, p. 57-66Article in journal (Refereed)
    Abstract [en]

    Textile reinforced concrete (TRC) has emerged as a promising alternative wherein corrosion is no longer an issue and much thinner and light-weight elements can be designed. Although TRC has been expansively researched, the formalization of experimental methods concerning durability arises when attempting to implement and design such innovative building materials. In this study, accelerated ageing tests paired with tensile tests were performed. The change in physico-mechanical properties of various commercially available textile reinforcements was documented and evaluated. The ability for the reinforcements to retain their tensile capacity was also quantified in the form of empirical degradation curves. It was observed that accelerated test parameters typically applied to fibre-reinforced polymer (FRP) bars and grids are generally too aggressive for the textile reinforcement products and alternative boundary conditions are necessary. The developed degradation curves were found to have an overall good correlation with the experimental findings.

  • 49.
    Williams Portal, Natalie
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Flansbjer, Mathias
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Malaga, Katarina
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Mueller, Urs
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Anchorage of Textile Reinforcement in High-Performance Concrete2017Conference paper (Refereed)
    Abstract [en]

    The mechanical properties of textile reinforced high-performance concrete (TRHPC) applied in innovative lightweight sandwich elements has been investigated in the framework of EC supported FP7 project, H-House (Healthier Life with Eco-innovative Components for Housing Constructions). TRHPC offers new possibilities for architects and engineers to create thinner and more durable concrete façade elements. Textile reinforcement grids are typically woven from non-metallic rovings usually consisting of continuous glass, rock or carbon fibres. The most promising performing textile reinforcement alternative in terms of mechanical and durability performance consists of carbon fibres. Carbon fibres do however have an inherent smooth surface which is unfavourable concerning its bond to the cement paste, which is often improved by polymer-based coatings. The bond behaviour, being a critical design parameter, should be investigated for TRHPC in order to understand limitations regarding required anchorage lengths for use in applications such as façade elements. The aim of this study was to quantify and verify the required anchorage length for a selected epoxy impregnated carbon textile reinforced TRHPC combination. To achieve this aim, the bond behaviour, leading to a suitable anchorage length (or overlap), was firstly studied by means of pull-out tests. Thereafter, the ultimate strength of the composite material was measured via uniaxial tensile testing with and without an overlap splice according to the findings from the pull-out tests. Optical measurements during the pull-out tests were performed using a video extensometer technique and by Digital Image Correlation (DIC) for the uniaxial tensile tests. Results indicated that the required anchorage length to yield rupture of the textile reinforcement in pull-out was deemed appropriate as an overlapping length when tested in tension. The combination of these two experimental methods on the composite level was useful for determining the overlapping length required for the TRHPC which could be applied in larger scale applications.

  • 50.
    Williams Portal, Natalie
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Flansbjer, MathiasRISE - Research Institutes of Sweden, Safety and Transport, Safety.Mueller, UrsRISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Analysis of the Flexural Behavior of Textile Reinforced Reactive Powder Concrete Sandwich Elements Using Optical Measurements2018Conference proceedings (editor) (Refereed)
    Abstract [en]

    Prefabricated and non-load bearing sandwich façade elements were developed using Textile Reinforced Reactive Powder Concrete (TRRPC) along with low density Foamed Concrete (FC) and Glass Fiber Reinforced Polymer (GFRP) continuous connecting devices. Four-point bending tests were performed on large-scale TRRPC sandwich element beams to characterize the structural performance, which included the flexural capacity, level of composite action, resulting deformation, crack propagation and failure mechanisms. Optical measurements based on Digital Image Correlation (DIC) were taken simultaneously to enable a detailed analysis of the underlying composite action. The structural behavior of the developed elements was found to be highly dependent on the stiffness and strength of the connectors to ensure composite action between the two TRRPC panels.

12 1 - 50 of 54
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.5