Dynamic coarsening of austenite dendrite in lamellar cast iron has been studied for a hypoeutectic alloy. The common morphological parameter to characterize dynamic coarsening, secondary dendrite arm space has been replaced by the Modulus of primary dendrite (MPD) and the Hydraulic diameter of the interdendritic space (DHydIP) to interpret the dynamic coarsening with respect to the local solidification time. The obtained results demonstrate the coarsening process of both the solid and liquid phase. The interdendritic space is increasing as the contact time between the solid and liquid phase increases. The ratio between the DHydIP/MPD is strongly dependent on the precipitated fraction primary austenite indicating clearly the morphology variation during coarsening. The interrupted solidification method demonstrate that the observed coarsening process is not only a combination of the increasing fraction precipitated solid phase and the rearrangement of the solid - liquid interphase curvature but the volume change due to density variation is also contribute to the coarsening process.