Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of temperature on coke properties and CO2 reactivity under laboratory conditions and in an experimental blast furnace
RISE, Swerea, Swerea MEFOS.
University of New South Wales.
University of New South Wales.
University of New South Wales.
Show others and affiliations
2005 (English)In: AISTech - Iron and Steel Technology Conference Proceedings, 2005, Vol. 1, 497-505 p.Conference paper, Published paper (Refereed)
Abstract [en]

Physical and chemical properties of coke samples excavated from LKAB's Experimental Blast Furnace (EBF) at MEFOS in Luleå, Sweden were characterized. A thermal annealing study the raw coke used in the EBF was also conducted in a horizontal furnace in a neutral environment at a range of temperatures up to 1650°C. Carbon crystallite height of the EBF coke and of the cokes treated in the laboratory furnace were measured by XRD while mineral phases were characterized by using SEM/EDS. The CO2 reactivity of the EBF cokes was measured by thermo-gravimetric analyser (TGA). The study demonstrated the strong effect of temperature on the modification of coke properties with special focus on carbon structure both under laboratory and experimental blast furnace conditions. The coke reactivity in the EBF was accelerated due to presence of recirculating alkalis in the coke, which increased as the coke descended in the EBF. The growth of carbon crystallite height of coke in the horizontal furnace was found to be of similar order as observed in the EBF under a similar range of temperatures. Comparison of carbon structure of laboratory treated cokes and the EBF excavated cokes indicated that carbon ordering of cokes is predominantly enhanced by the temperature rather than reacting gases or recirculating alkalis. The deterioration of coke quality such as coke strength (CSR) and abrasion propensity were related to coke graphitisation, alkalization and reactivity such that coke graphitisation was shown to have a strong impact on coke degradation behaviour. The study further implied that alkalis have a potential to influence the coke reactivity without affecting their graphitisation behaviour. The study also highlights the limitations of the CSR test for assessing the coke behaviour in an operating blast furnaces as it cannot simulate impact of graphitisation of cokes which is significant only at much higher temperatures.

Place, publisher, year, edition, pages
2005. Vol. 1, 497-505 p.
Series
AISTECH : Iron & Steel Technology conference proceedings, ISSN 1551-6997
Keyword [en]
Abrasion, Alkali, Coke, CSR, EBF, Gasification, Graphitisation, Minerals, TGA reactivity, XRD
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-13503Scopus ID: 2-s2.0-33644960899OAI: oai:DiVA.org:ri-13503DiVA: diva2:973712
Conference
AISTech 2005 - Iron and Steel Technology Conference Proceedings
Available from: 2016-09-22 Created: 2016-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Scopushttp://www.scopus.com/inward/record.url?eid=2-s2.0-33644960899&partnerID=40&md5=c98e937e8b23fbe943866bdd788bfa08
By organisation
Swerea MEFOS
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0