Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanosized fibers' effect on adult human articular chondrocytes behavior
Chalmers University of Technology.
RISE, Swerea, Swerea IVF.
Sahlgrenska University Hospital.
RISE, Swerea, Swerea IVF.
Show others and affiliations
2013 (English)In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 33, no 3, 1539-1545 p.Article in journal (Refereed)
Abstract [en]

Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. © 2012 Elsevier B.V. All Rights Reserved.

Place, publisher, year, edition, pages
2013. Vol. 33, no 3, 1539-1545 p.
Keyword [en]
Nanofibers, Neocartilage formation, Proliferation, Re-differentiation, Scaffold architecture
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-13335DOI: 10.1016/j.msec.2012.12.059Scopus ID: 2-s2.0-84873409095OAI: oai:DiVA.org:ri-13335DiVA: diva2:973541
Available from: 2016-09-22 Created: 2016-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://www.sciencedirect.com/science/article/pii/S0928493112006285
By organisation
Swerea IVF
In the same journal
Materials science & engineering. C, biomimetic materials, sensors and systems
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0