Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Melt spinning of conductive textile fibers with hybridized graphite nanoplatelets and carbon black filler
RISE - Research Institutes of Sweden, Swerea, Swerea IVF.ORCID iD: 0000-0002-1750-8762
Chalmers University of Technology.
RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
Chalmers University of Technology.
Show others and affiliations
2013 (English)In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 130, no 4, p. 2579-2587Article in journal (Refereed) Published
Abstract [en]

In this study, two different carbon fillers: carbon black (CB) and graphite nanoplatelets (GNP) are studied as conductive fillers for the preparation of conductive polypropylene (PP) nanocomposites. In order to obtain a homogenous dispersion of GNP, GNP/PP composites were prepared by two different methods: solid state mixing (SSM) and traditional melt mixing (MM). The result shows that MM is more efficient in the dispersion of GNP particles compared to SSM method. PP nanocomposites containing only one conductive filler and two fillers were prepared at different filler concentrations. Based on the analysis of electrical and rheological properties of the prepared nanocomposites, it shows that a hybridized composite with equal amounts of GNP and CB has favorable processing properties. Conductive fibers with a core/sheath structure were produced on a bicomponent melt spinning line. The core materials of these fibers are the hybridized GNP/CB/PP nanocomposite and the sheath is pure polyamide. It was found that GNPs were separated during melt and cold drawing which results in the decrease of conductivity. However, the conductivity could partly be restored by the heat treatment. © 2013 Wiley Periodicals, Inc.

Place, publisher, year, edition, pages
2013. Vol. 130, no 4, p. 2579-2587
Keywords [en]
conducting polymers, fibers, graphene and fullerenes, manufacturing, nanotubes, textiles
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-13325DOI: 10.1002/app.39480Scopus ID: 2-s2.0-84883050196OAI: oai:DiVA.org:ri-13325DiVA, id: diva2:973531
Available from: 2016-09-22 Created: 2016-09-22 Last updated: 2017-08-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://onlinelibrary.wiley.com/doi/10.1002/app.39480/abstract

Search in DiVA

By author/editor
Nilsson, ErikHagström, Bengt
By organisation
Swerea IVF
In the same journal
Journal of Applied Polymer Science
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4