This paper describes the experiences gained when using numerical and empirical methods in order to predict the accumulated surface characteristics for a safety component after several forging steps, controlled cooling and blasting. The forging steps were simulated in a sequence using one Finite Element (FE) code. The output forging mesh was used as input to the cooling simulation but was too coarse in order to reflect surface characteristics. The decarburisation effect during cooling that may influence the surface characteristics was not included in the cooling model. An attempt to create a parametric model of the blasting machine with output residual stresses and hardness as a function of input residual stresses, hardness and process parameters indicated the need of further investigation concerning the physical phenomena during blasting in the machine. A new method was developed for analysing the influence of the blasted surface texture on the stress intensity. The measured residual stresses and hardness span caused by variations in the blasting process were successfully used together with the stress intensity factor as input to a fatigue strength analysis. In order to establish a seamless chain of models through the manufacturing sequence further development concerning cooling and blasting models is required. © 2008 Verlag Stahleisen GmbH, Düsseldorf.